
ty
ython
stP

Just tyPyt: a pain-free recipe

for reproducible reports and publications

Mathieu Daëron (daeron@lsce.ipsl.fr)
Laboratoire des Sciences du Climat et de l'Environnement

Reproducible, transparent research: pros and cons

Good: Bad:

• You avoid mistakes

• You can reuse old work

• You get better reviews

• It's more work for you

• Everyone (not just your pals)
can fork your ideas

• Everyone (not just your pals)
can fork your ideas

Academic papers
are icebergs

1 document
7 pages
1.4 MB

Academic papers
are icebergs

1 document
7 pages
1.4 MB

From raw data to something meaningful:
Use a high-level coding language (Python, R, Julia...)

• High-level means easily understandable

(for others and for later you)

• Leave raw inputs absolutely unchanged

• Everything after that should be in code

• Separate code into smaller chunks

• Comments are your friend

• Generate lots of outputs

(tables, plots, logs)

 my-project
 │
 ├── inputs
 │ │
 │ ├── data.csv
 │ └── more-data.csv
 │
 ├── code
 │ │
 │ ├── code-chunk-1.py
 │ ├── code-chunk-2.py
 │ └── code-chunk-3.py
 │
 └── outputs
 │
 ├── plot.pdf
 ├── samples.csv
 ├── sites.csv
 ├── chunk-1.log
 ├── chunk-2.log
 └── chunk-3.log

Automating the whole pipeline (make, just, poe...)

• Running code chunks manually is no fun

• task runners such as make allow

painless reprocessing your full project

• This lets you experiment freely

(“what happens if I tweak this parameter?”)

 my-project
 │
 ├── inputs
 │ │
 │ ├── data.csv
 │ └── more-data.csv
 │
 ├── code
 │ │
 │ ├── code-chunk-1.py
 │ ├── code-chunk-2.py
 │ ├── code-chunk-3.py
 │ └── makefile
 │
 └── outputs
 │
 ├── plot.pdf
 ├── samples.csv
 ├── sites.csv
 ├── chunk-1.log
 ├── chunk-2.log
 └── chunk-3.log

 all: cleanup
 python code-chunk-1.py
 python code-chunk-2.py
 python code-chunk-3.py
 echo "All done!"

 only_figs:
 python code-chunk-3.py

 cleanup:
 rm -rf outputs/*

Enter the multiverse:
Embrace version control (Git, Jujutsu...)

First snapshot

More work

Make nice figures

Try new data processing approach

Fix a bug

Make dark-themed figures

Include new data

Enter the multiverse:
Embrace version control (Git, Jujutsu...)

First snapshot

More work

Make nice figures

Try new data processing approach

Fix a bug

Make dark-themed figures

Include new data From: Jens Fiebig
Subject: Re: OGLS preprint
Date: 11 October 2023 at 22:22
To: Mathieu Daëron

Hi Mathieu, [...]

From: Mathieu Daëron
Subject: Re: OGLS preprint
Date: 12 October 2023 at 00:17
To: Jens Fiebig

Hi Jens, thanks for bringing
that up.

Because git is a superpower, I
just now finished testing your
hypothesis [...]

Enter the multiverse:
Embrace version control (Git, Jujutsu...)

First snapshot

More work

Make nice figures

Try new data processing approach

Fix a bug

Make dark-themed figures

Include new data From: Jens Fiebig
Subject: Re: OGLS preprint
Date: 11 October 2023 at 22:22
To: Mathieu Daëron

Hi Mathieu, [...]

From: Mathieu Daëron
Subject: Re: OGLS preprint
Date: 12 October 2023 at 00:17
To: Jens Fiebig

Hi Jens, thanks for bringing
that up.

Because git is a superpower, I
just now finished testing your
hypothesis [...]

terrible work/life balance

Escape dependency hell (uv, pixi...)

• Each user may have code packages with

different, conflicting versions.

• Each project may require different,

incompatible package versions.

• Python used to be particularly bad.

https://xkcd.com/1987

Escape dependency hell (uv, pixi...)

• Each user may have code packages with

different, conflicting versions.

• Each project may require different,

incompatible package versions.

• Python used to be particularly bad.

https://xkcd.com/1987

• Solution: modern package managers such as uv (https://docs.astral.sh/uv)

create a complete virtual Python installation within each project.

• These tools are designed for speed and cross-platform reproducibility.

• Largest change to my coding quality-of-life in years

From data to written ideas (Typst)

• Hot take: Typst is considerably less insane

that either Word or LaTeX

• Bonus perk: painless dynamic loading

of previously output data (*.csv, *.toml...)

• Usual bells and whistles included

(citations, figure/table refs, links...)

 my-project
 │
 ├── inputs
 ├── code
 ├── outputs
 │
 ├── tech-report
 │ │
 │ ├── data.csv
 │ ├── metadata.toml
 │ └── report.typ
 │
 └── manuscript
 │
 ├── my-paper.typ
 └── my-refs.bib

Automatic yet good-looking reports

Sample results
(CO₂) (calcite)

Δ₄₇ (I-CDES, ‰)

Sample N Yield δ¹³CVPDB δ¹⁸OVSMOW δ¹⁸OVPDB value 95% CL SE SD

ETH-1 7 0.99 2.02 37.01 -2.20 0.2052 —
— 0.0085

ETH-2 7 1.00 -10.17 19.87 -18.69 0.2085 —
— 0.0105

ETH-3 9 0.96 1.71 37.46 -1.77 0.6132 —
— 0.0069

ETH-4 7 1.00 -10.23 19.72 -18.84 0.4511 —
— 0.0101

F01 4 0.96 -5.13 31.20 -7.79 0.5878 ± 0.0096 0.0048 0.0069

F04 4 0.99 -1.74 29.45 -9.48 0.5512 ± 0.0094 0.0047 0.0073

F09 4 0.66 -6.69 31.11 -7.88 0.4597 ± 0.0090 0.0045 0.0115

F16 4 0.98 0.18 30.42 -8.54 0.4207 ± 0.0090 0.0045 0.0077

F34 4 0.95 -2.07 31.15 -7.84 0.4167 ± 0.0089 0.0045 0.0069

F35 4 1.11 -5.18 32.47 -6.57 0.6006 ± 0.0097 0.0049 0.0077

F36-1 4 0.97 -8.15 32.37 -6.67 0.6053 ± 0.0098 0.0049 0.0027

F36-2 4 0.97 -10.46 31.57 -7.44 0.6136 ± 0.0100 0.0050 0.0088

F39 4 0.97 0.22 31.19 -7.80 0.4629 ± 0.0091 0.0045 0.0078

F63 4 0.97 0.81 31.49 -7.51 0.4604 ± 0.0091 0.0045 0.0074

T04 4 0.94 0.19 29.53 -9.41 0.5841 ± 0.0095 0.0048 0.0055

T08 4 0.89 8.28 35.74 -3.43 0.5560 ± 0.0099 0.0050 0.0055

T56 4 0.89 -7.81 34.96 -4.18 0.6305 ± 0.0099 0.0049 0.0089

δ¹⁸OVPDB computed assuming the sample is calcite; adjust accordingly for different mineralogies,

based on the relevant acid fractionation factor ¹⁸α. For example, for aragonite samples:

δ¹⁸Oarag = (1000 + δ¹⁸Ocalcite) × 1.00813 / ¹⁸αarag − 1000.

For ¹⁸αarag based on Kim et al. (2007) at 90 °C: δ¹⁸Oarag = (1000 + δ¹⁸Ocalcite)/1.00041 – 1000.

Temperature & Water Reconstructions
Inferred Water δ¹⁸OVSMOW ±95 %

Sample N Δ₄₇ ± 95 % T₄₇ ± 95 %
Kim and O'Neil

(1997)

Daëron et al.
(2019)

F01 4 0.5878 ± 0.0096 26.88 ± 3.26 -5.04 ± 0.65 -6.78 ± 0.63

F04 4 0.5512 ± 0.0094 40.11 ± 3.62 -4.20 ± 0.66 -6.01 ± 0.64

F09 4 0.4597 ± 0.0090 83.04 ± 5.17 +4.35 ± 0.74 +2.35 ± 0.72

F16 4 0.4207 ± 0.0090 107.79 ± 6.33 +6.98 ± 0.79 +4.89 ± 0.77

F34 4 0.4167 ± 0.0089 110.65 ± 6.45 +8.06 ± 0.80 +5.95 ± 0.77

F35 4 0.6006 ± 0.0097 22.64 ± 3.15 -4.67 ± 0.65 -6.39 ± 0.63

F36-1 4 0.6053 ± 0.0098 21.14 ± 3.13 -5.07 ± 0.65 -6.79 ± 0.63

F36-2 4 0.6136 ± 0.0100 18.53 ± 3.11 -6.39 ± 0.65 -8.09 ± 0.64

F39 4 0.4629 ± 0.0091 81.20 ± 5.10 +4.17 ± 0.74 +2.17 ± 0.72

F63 4 0.4604 ± 0.0091 82.65 ± 5.18 +4.67 ± 0.74 +2.66 ± 0.72

T04 4 0.5841 ± 0.0095 28.13 ± 3.27 -6.40 ± 0.64 -8.15 ± 0.63

T08 4 0.5560 ± 0.0099 38.24 ± 3.76 +1.54 ± 0.70 -0.28 ± 0.68

T56 4 0.6305 ± 0.0099 13.43 ± 2.90 -4.22 ± 0.64 -5.90 ± 0.62

Reconstructions based on the OGLS23 calibration of Daëron and Vermeesch (2024) as implemented by the

D47calib
 library (v.1.3.1). Confidence intervals account for analytical error in Δ₄₇ but not for calibration

uncertainties, which remain below ±1 °C (95 % CL) in the range 0–50 °C.

Sample Size Distribution

Methods
Sample preparation and analysis

Carbonate samples were converted to CO₂ by phosphoric acid reaction at 90 °C in a common, stirred acid bath for
15 minutes. Initial phosphoric acid concentration was 103 % (1.91 g/cm³) and each batch of acid was used for 7 days.
After cryogenic removal of water, the evolved CO₂ was helium-flushed at 20–25 mL/mn through a purification column
packed with Porapak Q (50/80 mesh, 1 m length, 2.1 mm internal diameter) and held at −20 °C, then quantitatively
recollected by cryogenic trapping and transferred into an Isoprime 100 dual-inlet mass spectrometer equipped with six
Faraday collectors (m/z 44–49). Each analysis took about 2.5 hours, during which analyte gas and working reference
gas were allowed to flow from matching, 10 mL reservoirs into the source through deactivated fused silica capillaries
(65 cm length, 110 μm internal diameter). Every 20 minutes, gas pressures were adjusted to achieve m/z = 44 current of
80 nA, with differences between analyte gas and working gas generally below 0.1 nA. Pressure-dependent background
current corrections were measured 12 times for each analysis.

IRMS data processing

All background measurements from a given session within ±6 hours of any given analysis were used to determine
a mass-specific relationship for that analysis, linking background intensity (𝑍𝑚), total m/z,=,44 intensity (𝐼44), and
time (𝑡), with 𝑃 being a polynomial of degree 2 to 4:𝑍𝑚 = 𝑎𝐼44 + 𝑃(𝑡)
Background-corrected ion current ratios (δ₄₅ to δ₄₉) were converted to δ¹³C, δ¹⁸O, and “raw” Δ₄₇ values as described by
Daëron et al. (2016) using the IUPAC oxygen-17 correction parameters (Brand et al., 2010). The isotopic composition
(δ¹³C, δ¹⁸O) of unknown samples was standardized using an affine (“two-point”) correction based on the nominal
δ¹³CVPDP and δ¹⁸OVPDB values of the ETH carbonate standards (Bernasconi et al., 2018). The same standards, along with
an oxygen-18 acid fractionation factor of 1.00813 (Kim et al., 2007), were used to compute the isotopic composition
(δ¹³C, δ¹⁸O) of our working reference gas. Raw Δ₄₇ values were then converted to the I-CDES reference frame
(Bernasconi et al., 2021) using a pooled regression approach (Daëron, 2021) as implemented by the D47crunch library
(v.2.4.2). Full analytical errors are derived from the external reproducibility of unknowns and standards (Nf = 62) and
conservatively account for the uncertainties in raw Δ₄₇ measurements as well as those associated with the conversion
to the I-CDES reference frame (Daëron, 2021).

Δ₄₇ Residuals

Temporal Distribution of Analyses

Sharing and referencing your work (Zenodo, GitHub...)

Backup your project
to an online code

repository

Sharing and referencing your work (Zenodo, GitHub...)

Backup your project
to an online code

repository

Add a readme and a license (I recommend MIT)

Sharing and referencing your work (Zenodo, GitHub...)

Make it public
when you're ready

Backup your project
to an online code

repository

Add a readme and a license (I recommend MIT)

Sharing and referencing your work (Zenodo, GitHub...)

Make it public
when you're ready

Backup your project
to an online code

repository

Publish versions
of record with a

permanent DOI
(I recommend
zenodo.org)

Add a readme and a license (I recommend MIT)

Sharing and referencing your work (Zenodo, GitHub...)

Make it public
when you're ready

Backup your project
to an online code

repository

Publish versions
of record with a

permanent DOI
(I recommend
zenodo.org)

Add a readme and a license (I recommend MIT)

Refer to the
peer-reviewed
article

Yes you can!

• None of these tools are very difficult to learn.

• All of them are free and open-source.
(so your work will be reusable decades from now)

• Very worthwhile investment, particularly
(but not only) for students & early-career

Good researchers copy;

great researchers fork.

(paraphrased after W. Faulkner,

I. Stravinsky, P. Picasso, and S. Jobs)

