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ARTICLE INFO ABSTRACT

Keywords: Accurate and precise mass spectrometric determination of ppm-ppb quantities of mass 47-49 clumped isotopo-
Analytical geochemistry logues of carbonate-derived CO,, expressed as A,,—A,y values, requires advanced processing schemes. Here, we
Carbonate clumped isotopes introduce D4Xgui, a user-friendly processing tool that allows correction of mass-spectrometric raw intensities
Ay for a pressure baseline artifact, before standardization is carried out using D47crunch. D4Xgui enables rapid
i‘"‘ processing of multi-session data under consideration of full error-propagation, interactive visualization of results
B;Zeline correction including tools for data quality assurance, calculation of carbonate crystallization temperature from finally pro-
Standardization cessed data, and rapid re-evaluation of datasets with revised processing parameters. Though the primary focus
of D4Xgui is on carbonates it can also be applied to the correction of mass spectrometric raw data obtained on
CO, from other sources.
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1. Motivation and significance

Carbonate clumped isotope thermometry enables determination of
carbonate formation temperatures [1] and allows identification of ef-
fects of isotopic disequilibrium [2] or secondary alteration [3,4], among
others. Its application relies on thermodynamically driven fractiona-
tion of stable carbon and oxygen isotopes among different carbonate
isotopologues, a phenomenon that favors increasing excess formation
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(relative to stochastically predicted isotope partitioning) of multiply
heavy substituted isotopologues (clumped isotopes) with decreasing tem-
perature [5]. Since excess abundances of multiply substituted isotopo-
logues cannot be analysed directly within the carbonate directly, sam-
ples are quantitatively reacted with phosphoric acid and measurements
are performed on the evolved CO,. Precise analysis of excess abundances
of multiply substituted isotopologues was initially restricted to CO, of
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mass 47 (mainly made up of 13C180°0) and the corresponding metric
defined as the A,; value. Recent improvements in instrumentation have
also enabled highly precise quantification of excess abundances of mass
48 (mainly made up of 12C180!80) and 49 (exclusively made up of
13¢180180) isotopologues [6-8]. Analysis of A, alongside A4, values
makes it possible to identify rate-limiting processes involved in carbon-
ate (bio-)mineralization and to correct A,; values for these non-thermal
biases, finally achieving accurate reconstruction of carbonate crystalliza-
tion temperature [7,9]. The addition of A,z and A, to the A4, toolkit can
also help to identify isobaric interferences that follow compound-specific
vectors in Ay;/Aug- and Aug/Ayg-space [10].

Gas-source isotope ratio mass spectrometry represents a well-
established technique for the analysis of relative abundances of CO,
isotopologues of masses 44-49. Carbonate-derived CO, is repeatedly
measured against a working gas of known oxygen (expressed as §'80)
and carbon (expressed as 6'3C) isotope compositions, and the isotopic
composition of unknown sample CO, is expressed as 6%, 5§40, 547, 548
and 6% values relative to that of the working gas. Precise and ac-
curate determination of A,;, A, and A, values requires enhanced
counting statistics, achieved through multiple alternating replications
of unknowns and standards. State-of-the-art processing schemes for
the determination of §'3C, §'80, and A4;-A,y values from mass spec-
trometric raw &' values generally consider corrections for (i) isobaric
contributions from !70-bearing isotopologues [11-13], (ii) composi-
tional non-linearity [14] and iii) scale compression [15]. Compositional
non-linearity can arise from secondary electrons which affect measured
m/z,;—M/Z49 intensities. These drive the baseline below m/z,,-m/z,q9
to negative intensities, the extent of which depends on the pressure of
CO, in the ion source [pressure baseline effect, PBL;16]. Compositional
non-linearity is expressed by slopes # zero in correlation plots of &' vs
A, values for CO, gases (or carbonates) of different bulk isotopic com-
positions, that were equilibrated at a given temperature. This bias is
driven by a mismatch of bulk isotopic compositions, when comparing
the sample analyte with that of the working gas. Since the negative
PBL signal scales with the fixed-intensity m/z,, beam and —over a short
term— the PBL signal doesn’t change in magnitude, samples character-
ized by a lighter §' composition compared to that of the working gas
will have a negative A; bias, and vice versa. Recently developed soft-
ware allows correction of mass spectrometric raw data for (i), (ii) and
(iii) [e.g.,17,18], but lacks optimized scaling-factor-based correction
of mass-spectrometric raw intensities utilizing a half-mass cup, which
can introduce artificial bias on &' values, ultimately influencing final
A; values [6,19]. In addition, some processing schemes lack full error
propagation [e.g., 18].

Here, we introduce a data processing tool that allows the most accu-
rate determination of fully error-propagated A; values of CO, extracted
from carbonates. In the first step, a PBL correction algorithm, which
fully corrects for the secondary electron-induced bias in mass spectro-
metric raw &' and A, values, through optimized scaling factors is added
to the data processing scheme of John and Bowen [18]. In the sec-
ond step, PBL-corrected 547-54 values are standardized with D47crunch
[17,20], which allows determination of final and fully error-propagated
A; values. Learning a programming language to apply state-of-the-art
mathematical processing frameworks is a time-consuming task in itself.
With our D4Xgui app, we make a user-friendly data processing scheme
available for the carbonate clumped isotope community.

2. Software description
2.1. Software architecture

D4Xgui is developed in Python and built using the Streamlit frame-
work for interactive web applications. The tool enables users to apply
baseline correction to mass-spectrometric carbonate clumped isotope
raw data. Moreover, it integrates the D47crunch library for clumped
isotope standardization and full error propagation. The software com-
ponents are modular for ease of maintenance and future extension.
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Fig. 1. Flowchart illustrating the internal data architecture of D4Xgui. It is possi-
ble to upload eithe raw m/z,,_,, data or pre-processed §*°-6* data directly into
D4Xgui. The (optional) baseline-correction algorithm is utilizing a half-mass cup
signal; if this signal is not available, the user can directly calculate §*°-5* values
from mass-spectrometric raw data. In order to simply use D47crunch, the user
can directly upload pre-processed §*°-6%° data. Uploaded or calculated §*°-5%
data can (optionally) be stored in the pre_replicates table for later use. The
session state may (optionally) be stored with an identifier in the session_state
table, including uploaded data and processing results — dependend on a user’s
current session. The (optional) sample_metadata table is utilized to apply post-
or pre-processing filters, based on sample metadata.

The core architecture separates data acquisition and input validation,
PBL correction computations, standardization workflows, visualization
modules, and export functionalities. Interactive plots utilize Plotly and
Streamlit’s native charting capabilities, enabling real-time feedback and
rapid data inspection.

D4Xgui is equipped with multiple data input interfaces; a graphi-
cal overview can be found in Fig. 1. Input data (mass-spectrometric
m/z,,_49 data or pre-processed 6*°-5%°) can be directly uploaded into
D4Xgui using a file navigation context menu and via drag-and-drop func-
tionality. Internally, D4Xgui is backed by a self-contained, disk-based
local SQLite database containing a table for pre-processed 5*°-6%° val-
ues (pre_replicates table). In addition to this, a metadata database
(sample_metadata table) is used to store metadata such as sample name,
session, and other sample-specific information, all of which can be used
for pre- and post-processing filtering. These databases can be managed
through a Database Management page. D4Xgui is designed to also allow
processing without the use of any database functionality, provided that
the necessary data is uploaded prior to processing. Another database
(session_states table) is utilized for storing entire session caches in a
Save & Reload page.

2.1.1. Internal data structure

No significant differences were obtained if data evaluation started
from the cycle or replicate level; for this reason D4Xgui will always
calculate mean replicate values before adding data into the internal
database.

Database-pre_replicates table: The pre_replicates table is used
to store pre-processed §+°-6*° values together with information on UID,
Sample, Session and Timetag. These data can be derived from the
upload, or from D4Xgui’s internal calculations.

Database-metadata table: Sample metadata is internally managed
through the sample_metadata table, and can be provided in .xIsx for-
mat to make advanced filtering accessible in both, the Data-I/O page
for pre-processing and, moreover, in pages dedicated to the graphi-
cal representation of post-processing results. Metadata can additionally
be modified and new entries added to it via the Database Management
page, Sample Metadata tab. These filtering capabilities allow users to, for
example, select a specific sample type, whereupon the app will provide
all session data that includes archived samples of the chosen type, facili-
tating easy (re-)processing of multi-session datasets. Metadata filters are
based on Sample, Session, Project, Publication, Type, Mineralogy
and in charge in the actual build.
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Database-D4Xgui session state: At any point, it is additionally possible
to dump the entire session cache of D4Xgui into another self-contained
database session_states. This functionality allows the user to store
the session state at any point, and either continue processing at a later
time, or archive the results for future inspection. To do so, the Save &
Reload page can be utilized by saving the current session state of the app
together with a custom identifier.

2.1.2. Upload options

Before uploading data directly to D4Xgui, it is necessary to format
machine-generated raw data to ensure compatibility. While some ven-
dors for analytical setups provide automated .csv outputs, others store
raw data in undocumented proprietary formats or require human in-
teraction to produce exports. Available tools for parsing raw data from
binary files are e.g., isoreader [21] as a script-based option for R users,
or Easotope [18] as a multi-platform GUI tool for *.did files, produced
by IsoDat (Thermo Scientific, MAT253 or 253 +).
Upload option A - Uploading raw intensity data: Raw intensity data
can either be uploaded in cycle, acquisition or replicate hierarchy. In the
current version, uploaded raw m/z intensities can only be corrected for a
negative PBL (i.e., for the contribution of secondary electrons) if the gas-
source mass spectrometer is equipped with an additional half-mass cup
that continuously monitors the PBL intensity [e.g. at m/z4; 5, see 22]. If
no half-mass cup is available, we advise employing a custom, baseline
scan-based correction of raw intensities [e.g., 16,19,23]. Otherwise, data
can also be processed without prior correction of raw intensities, ignor-
ing potential bias in §' values, which ultimately increases uncertainty
in final results [6]. The following features are required for each in-
stance: UID, Sample, Session, Timetag, Replicate, raw_r44, raw_r45,
raw_r46, raw_r47, raw_r48, raw_r49, raw_r47.5, raw_s44, raw_s45,
raw_s46, raw_s47, raw_s48, raw_s49, raw_s47.5.
Upload option B-Uploading pre-processed §-5*° values: Replicate-
level 6°-6%° values, whether PBL-corrected or not, can be uploaded.
Given that the D47crunch module is invoked for standardization, its rel-
evant features must be uploaded per instance: UID, Sample, Session,
Timetag, d45, d46, d47, d48, d49.

2.2. Software functionalities

The main functionalities of D4Xgui include:

Correction of raw isotopologue intensities for pressure baseline bias
caused by secondary electron effects in isotope-ratio mass spectrom-
etry.

Least-squares regression for optimization of standardization param-
eters within the D47crunch framework.

Comprehensive error propagation that includes analytical uncer-
tainty, as well as contributions from standardization steps.
Interactive visualization of raw, corrected, and standardized data,
enabling quality control at every level.

Metadata management to allow filtering of multi-session or multi-
sample datasets.

Export capabilities for processing outputs and figures.

2.2.1. Baseline correction and standardization

An overview of the processing pipeline for carbonate clumped iso-
tope data is given in Fig. 2. Pressure baseline (PBL)-correction of mass
spectrometric raw data has been shown to be essential for accurate
determination of A,;-A,g values, as it is designed to eliminate non-
linearity-derived biases both in 6 and A, values [6,19]. For D4Xgui, we
implemented the methodology proposed by Fiebig et al. [7] and later
refined by Bernecker et al. [6]. The PBL (i.e., the negative signal arising
from secondary electrons) is continuously monitored at half-mass cup
m/z47 5, and subtracted from m/z,;, m/z,4g and m/z,q intensities after
scaling the m/z,; 5 intensity by cup-specific scaling factors utilizing an
optimizer algorithm. Optimal scaling factors can be determined itera-
tively based on the prerequisite that PBL-corrected §' and A, values (vs.
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Fig. 2. Schematic overview of the processing steps involved in the process of
calculating baseline-corrected, standardized and fully error-propagated clumped
isotope values from mass spectrometric raw intensity data. The major difference
between commonly used processing schemes [e.g.,18] is the optimized scaling
factor determination for baseline correction — this part already requires calcu-
lating 6’ and A, metrics by iteratively refining scaling factors (orange in the
flowchart). Once the best-fit scaling factors are determined, m/z,;_,, raw inten-
sity data gets corrected and the processing scheme is conducted one last time
with the final intensites. Abbreviations: WG = working gas, SG =sample gas. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

reference gas) obtained for CO, gases or carbonates equilibrated at a
given temperature should be characterized by slopes closest to zero if
plotted against each other [6,7].

Moreover, users can define custom sets of internal standards with
precisely constrained long-term assigned A; values. These standards
are then used by the optimization algorithm, which adjusts the scal-
ing factors to minimize the absolute differences between measured and
assigned A; values. For each mass (47-49), the scaling factor is ob-
tained by minimizing the sum of squared deviations between all pairs
of standards, comparing the differences in their measured and assigned
values:

Sfi,()pt = min <Z [(A:'((Sfi)meas. - Aﬁ(sfi)meus.) - (Af'(ass, - Aﬁass,)]2> (1)

k<l

where k and / index individual standards, i is the cardinal mass (47-49),
and sf is the corresponding scaling factor.

Baseline-corrected data can be stored in the pre_replicates table,
where they will be accessible for future processing. Pre-processed car-
bonate clumped isotope data (6*°-5*°) are finally standardized relative to
equilibrated gas- and/or carbonate anchors of well-defined A; composi-
tions [e.g., 10,24-26]. For this step, the optimized correction algorithm
implemented for D47crunch is used, which is outlined in detail by
Daéron [17]. This algorithm considers least-squares optimization on
unknowns and anchors and reports final clumped isotope results with
fully propagated errors, accounting for both autogenic and allogenic
analytical uncertainties. Full propagation of analytical uncertainties
arising from preparation and analysis of samples and standards is es-
sential to i) determine realistic uncertainties of estimated carbonate
formation temperatures, ii) distinguish between different rate-limiting
processes involved in carbonate (bio)mineralization, and iii) test the
inter-laboratory reproducibility of analyses. D4Xgui provides the op-
tion to report unknown sample values on the CDES [7,25] and the
I-CDES [24]. Custom standardization sets can be defined prior to pro-
cessing, allowing anchoring of unknown sample data relative to internal
reference materials that were calibrated against equilibrated gases or
internationally assigned carbonate anchors.

2.2.2. Formation temperature estimates
D4Xgui allows calculation of apparent formation temperatures from
standardized A,; values considering empirical A4;-T calibrations of
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Fig. 3. A: Demonstrative screenshot of the Standardization Results page, dis-
playing AA,; residuals over time. Repeatability (2SD) characteristic for the
selected interval is automatically calculated and displayed as horizontal line.
B: Demonstrative screenshot of the Dual Clumped Space page, displaying A,;
and A, data relative to the position of equilibrium [10]. C: Demonstrative
screenshot of the Standardization Error page, displaying standardization-related
uncertainties in 6,,/A;-space [17].

Fiebig et al. [10], Swart et al. [8] and Anderson et al. [27]. Additional
calibrations (i.e., Anderson et al. [27], Breitenbach et al. [28], Daéron
et al. [29], Jautzy et al. [30], Huyghe et al. [31] and Peral et al. [32]),
re-processed by Daéron & Vermeesch [33] using OGLS regression [34],
as well as the composite OGLS23 calibration, are available from the
D47calib module [35].
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Fig. 4. Demonstrative screenshot of the Discover Results page, displaying §'0
data vs. Ay, ,,,, data for individual replicates of carbonate standard ETH-2. CO,-
H,O re-equilibration is indicated for replicates showing both elevated A,; ,,,
and 6'30 values. Ay; ¢ p 599 Values of these samples plot outside the long-term re-
peatability interval characteristic of ETH-2 (0.2093 + 0.0017 %o) in the absence
of significant analytical bias [36].

3. Ilustrative examples

D4Xgui offers access to a wealth of graphical outputs.

Temporal evolution of replicate 6'3C, §'80, raw and final A, values
and corresponding residuals Fig. 3(A),

Presentation of A; data in dual clumped isotope space (sample mean
values including fully propagated +1SE or +2SE uncertainties, or
individual replicate values) relative to the equilibrium A,;/A,s and
A7/ Ay relationships [6,10] Fig. 3(B),

Standardization-derived contribution of analytical uncertainties in &'
/A, space [17] Fig. 3(C),

Custom plots in which any two columns (e.g., sample name, acqui-
sition time, isotopic composition, etc.) of any dataset can be plotted
against each other, are accessible from the Discover Results page
(Figs. 4 and 5). Optionally, linear or higher-order regression analysis
can be performed on selected data.

.

3.1. Identifying H,O-driven partial re-equilibration of analyte CO,

When CO,, either derived from acid digestion of carbonate samples
or directly introduced through autofingers [22], partially re-equilibrates
with water, its oxygen and clumped isotope compositions can be re-
set, leaving characteristic correlations between 6'%0, A,; and A in
CO, replicates from a given sample. We were able to identify this
effect through data inspection at the replicate level (Fig. 4). Partial
re-equilibration with H,O can occur in an autosampler over carbonate
samples with high surface area [36]. These correlations are especially
pronounced for samples with extreme oxygen and clumped isotope
compositions. Due to multiple factors influencing the final result, such
as varying degrees of re-equilibration on a sample-to-sample basis or
distinct oxygen isotope values of the analyte leading to differently pro-
nounced mixing effects, this effect cannot be corrected for. It is therefore
of utmost importance to identify re-equilibration bias [36].

3.2. Identifying isobaric interferences

Fiebig et al. [10] have recently shown that the presence of a few hun-
dred ppb-quantities of NO, in the analyte CO, can introduce significant
bias in measured A4; and A,z values determined by isotope-ratio mass
spectrometry. Samples whose A,; and A4 values are significantly biased
by variable amounts of NO, plot along a characteristic slope of —0.30 =
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Fig. 5. Demonstrative screenshot of the Discover Results page, showing compro-
mised sample Dolomite_80-1 [37,52], whose replicates show variable extents of
NO, bias in their A,;, A,q values.

0.05 (Fig. 5). The visualization capabilities of D4Xgui make identifica-
tion of NO, and other isobaric interferents in A,;/A,g and Ayg/A,g space
straightforward, as affected data follow predicted deviation slopes [10].
Compromised samples can, therefore, be reliably identified and mitiga-
tion strategies (that eliminate isobaric bias) can easily be tested for their
efficacy.

4. Impact

D4Xgui was developed as an open-source Python module by Miguel
Bernecker et al. (bernecker@em.uni-frankfurt.de), tested at Goethe
University Frankfurt am Main, and has already been successfully utilized
for peer-reviewed publications. These studies improved the methodol-
ogy [6,10,36,37] and, moreover, investigated the A,,/A s compositions
of pedogenic carbonates [38-40], cold- and warm-water corals [41],
coccolith chalk [42], molluscs [43-45], diagenetically reset carbonates
[46,47], methane seep carbonates [48], brachiopods [49], diageneti-
cally formed dolomites [50], and speleothems [51].

5. Conclusions

D4Xgui represents a state-of-the-art processing tool for carbonate
clumped isotope data processing. This user-friendly, open-source tool
provides a streamlined workflow for accurate correction and standard-
ization of mass spectrometric raw data, while considering full error
propagation. The extensive graphical outputs facilitate data visualiza-
tion and real-time assessment of data quality, all through an accessible
interface that doesn’t require prior programming knowledge.

By providing a common platform for data processing and analy-
sis, D4Xgui not only simplifies complex workflows but also promotes
consistency and transparency in carbonate clumped isotope research.
Developed using the flexible Streamlit framework, D4Xgui is de-
signed to allow further community-driven customization. Its modular
plug&play architecture enables easy integration of new features as the
field of clumped isotope research steadily evolves. Planned future up-
dates include the integration of an Application Programming Interface
(API), which will enhance data management and enable script-based
interaction with the database. Moreover, we are already working on
the integration of Easotope databases, which will enable seamless in-
corporation of archived datasets. This addition will also ensure that

SoftwareX 33 (2026) 102492

data processed through D4Xgui adheres to the FAIR principles, promot-
ing findability, accessibility, interoperability, and long-term data reuse
across laboratories.
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