User Tools

Site Tools


papers

Reviews

  1. Affek, H. P. (2012) Clumped isotope paleothermometry: Principles, applications, and challenges. in Linda C. Ivany and Brian Huber (eds.), Reconstructing Earth’s Deep-Time Climate – The State of the Art in 2012. Paleontological Society Papers, v. 18. 101-114.
  2. Eiler, J. M. (2011), Paleoclimate reconstruction using carbonate clumped isotope thermometry, Quaternary Sci. Rev., 30(25-26), 3575-3588. doi: 10.1016/j.quascirev.2011.09.001
  3. Eiler, J. M. (2007), “Clumped-isotope” geochemistry – The study of naturally-occurring, multiply-substituted isotopologues, Earth Planet. Sci. Lett., 262, 309-327. doi: 10.1016/j.epsl.2007.08.020
  4. Quade, J., C. Garzione, and J. Eiler (2007), Paleoelevation reconstruction using pedogenic carbonates, Rev. Mineral. Geochem., 66(53–87), doi: 10.2138/rmg.2007.66.3.

Theory, Methods, and Calibration

  1. Hill P.S., Tripati, A.K., Schauble, E.A. (2014) Theoretical constraints on the effects of pH, salinity, and temperature on clumped isotope signatures of dissolved inorganic carbon species and precipitating carbonate minerals. Geochimica et Cosmochimica Acta. 125, 610-652. doi: http://dx.doi.org/10.1016/j.gca.2013.06.018
  2. Tang, J., Dietzel, M., Fernandez, A., Tripati, A.K., Rosenheim, B.E. (2014) Evaluation of kinetic effects on clumped isotope fractionation (D47) during inorganic calcite precipitation. Geochimica et Cosmochimica Acta. 134, 120-136. doi: http://dx.doi.org/10.1016/j.gca.2014.03.005
  3. Came R.E., Brand U., Affek H.P. (2014) Calibration of the carbonate clumped isotope paleothermometer using modern brachiopods. Chemical Geology. 377, 20-30. doi: http://dx.doi.org/10.1016/j.chemgeo.2014.04.004
  4. Eagle, R., Eiler, J., Tripati, A., Ries, J., Freitas, P., Hiebenthal, C., Wanamaker Jr., A., Taviani, M., Elliot, M., Richardson, C., Marenssi, S., Nakamura, K., Ramirez, P., Roy, K. (2013), The influence of temperature and seawater carbonate saturation state on 13C-18O bond ordering in bivalve mollusks, Biogeosciences. doi:10.5194/bgd-10-157-2013.
  5. Zaarur S., Affek H.P., Brandon M.T. (2013) A revised calibration of carbonate clumped isotopes thermometer. Earth and Planetary Research Letters. 382. 47-57. doi: http://dx.doi.org/10.1016/j.epsl.2013.07.026
  6. Wacker, U., Fiebig, J., and Schöne, B.R. (2013), Clumped isotope analysis of carbonates: comparison of two different acid digestion techniques, Rapid Commun. Mass Spectrom., 27, 1631-1642. doi:10.1002/rcm.6609
  7. Bernasconi, S. M., B. Hu, U. Wacker, J. Fiebig, S. F. M. Breitenbach, and T. Rutz (2013), Background effects on Faraday collectors in gas-source mass spectrometry and implications for clumped isotope measurements, Rapid Commun. Mass Spectrom., 27(5), 603-612. doi:10.1002/rcm.6490
  8. Yoshida, N., M. Vasilev, P. Ghosh, O. Abe, K. Yamada, and M. Morimoto (2013), Precision and long-term stability of clumped-isotope analysis of CO2 using a small-sector isotope ratio mass spectrometer, Rapid Commun. Mass Spectrom., 27(1), 207-215. doi:10.1002/rcm.6431
  9. He, B., G. A. Olack, and A. S. Colman (2012), Pressure baseline correction and high-precision CO2 clumped-isotope (∆47) measurements in bellows and micro-volume modes, Rapid Commun. Mass Spectrom., 26(24), 2837-2853. doi:10.1002/rcm.6436
  10. Cao, X. and L. Yun (2012), Theoretical estimation of the equilibrium distribution of clumped isotopes in nature, Geochim. Cosmochim. Acta, 77, 292-303. doi: 10.1016/j.gca.2011.11.021
  11. Dennis, K. J., H. P. Affek, B. H. Passey, D. P. Schrag, and J. M. Eiler (2011), Defining an absolute reference frame for 'clumped' isotope studies of CO2, Geochim. Cosmochim. Acta, 75(22), 7117–7131. doi: 10.1016/j.gca.2011.09.025
  12. Tripati, A. K., R. A. Eagle, N. Thiagarajan, A. C. Gagnon, H. Bauch, P. R. Halloran, and J. M. Eiler (2010), Apparent equilibrium 13C-18O isotope signatures and 'clumped isotope' thermometry in foraminifera and coccoliths, Geochim. Cosmochim. Acta, 74(20), 5697-5717. doi: 10.1016/j.gca.2010.07.006.
  13. Schmid, T. W. and S. M. Bernasconi (2010), An automated method for “clumped-isotope” measurements on small carbonate samples, Rapid Commun. Mass Spectrom., 24(14), 1955-1963. doi: 10.1002/rcm.4598
  14. Guo, W., J. L. Mosenfelder, W. A. Goddard III, and J. M. Eiler (2009), Isotopic fractionations associated with phosphoric acid digestion of carbonate minerals: Insights from first-principles theoretical modeling and clumped isotope measurements, Geochim. Cosmochim. Acta, 73(24), 7203-7225. doi: 10.1016/j.gca.2009.05.071
  15. Huntington, K. W., J. M. Eiler, H. P. Affek, W. Guo, M. Bonifacie, L. Y. Yeung, N. Thiagarajan, B. Passey, A. Tripati, M. Daëron, and R. Came (2009), Methods and limitations of 'clumped' CO2 isotope (Δ47) analysis by gas-source isotope ratio mass spectrometry, J. Mass. Spectrom., 44(9), 1318-1329. doi: 10.1002/jms.1614
  16. Ghosh, P., J. M. Eiler, S. E. Campana, and R. F. Feeney (2007), Calibration of the carbonate ‘clumped isotope’ paleothermometer for otoliths Geochim. Cosmochim. Acta, 71(11), 2736-2744. doi: 10.1016/j.gca.2007.03.015
  17. Ghosh, P., J. Adkins, H. Affek, B. Balta, W. Guo, E. A. Schauble, D. Schrag, and J. M. Eiler (2006), 13C-18O bonds in carbonate materials: A new kind of paleothermometer, Geochim. Cosmochim. Acta, 70(6), 1439-1456. doi: 10.1016/j.gca.2005.11.014
  18. Schauble, E. A., P. Ghosh, and J. M. Eiler (2006), Preferential formation of 13C–18O bonds in carbonate minerals, estimated using first-principles lattice dynamics Geochim. Cosmochim. Acta, 70(10), 2510-2529. doi: 10.1016/j.gca.2006.02.011
  19. Wang, Z., E. A. Schauble, and J. M. Eiler (2004), Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases, Geochim. Cosmochim. Acta, 68(23), 4779-4797. doi: 10.1016/j.gca.2004.05.039

Paleoclimate

  1. Tripati, A.K., Sahany, S., Pittman, D., Eagle, R.A., Neelin, J.D., Mitchell, J.L.., Beaufort, L. (2014) Modern and glacial tropical snowlines controlled by sea surface temperature and atmospheric mixing. Nature Geoscience. 7, 205-209. doi: http://www.nature.com/ngeo/journal/v7/n3/abs/ngeo2082.html
  2. Frantz, C.M., Petryshyn, V.A., Marenco, P.J., Tripati, A.K., Berelson, W.M., Corsetti, F.A. (2014) Dramatic local environmental change during the Early Eocene Climatic Optimum detected using high resolution chemical analyses of Green River Formation stromatolites. Palaeogeography, Palaeoclimate, Palaeoecology. 405, 1-15. doi: http://dx.doi.org/10.1016/j.palaeo.2014.04.001
  3. Antibus, J.V., Panter, K.S., Wilch, T.I., Dunbar, N., McIntosh, W., Tripati, A.K., Bindeman, I., Blusztajn, J. (2014) Alteration of volcaniclastic deposits at Minna Bluff: Geochemical insights on mineralizing environment and climate during the Late Miocene in Antarctica. Geochemistry, Geophysics, Geosystems. 15, 3258-3280. doi: http://dx.doi.org/10.1002/2014GC005422
  4. Douglas P., Affek H.P., Ivany L., Houben A.J.P., Sijp W., Sluijs A., Scouten S., Pagani M. (2014) Pronounced zonal heterogeneity in Eocene southern high latitude sea surface temperatures. PNAS. 111(18), 6582-6587. doi: www.pnas.org/cgi/doi/10.1073/pnas.1321441111
  5. Eagle, R., Risi, C., Mitchell, J., Neelin, D., Eiler, J., Seibt, U., Li., G., Tripati, A. (2013) High regional climate sensitivity over continental China inferred from glacial-recent changes in temperature and the hydrologic cycle, Proceedings of the National Academy of Sciences, 110, 8813–8818.
  6. Kluge T., Affek H.P., Marx T., Aeschbach-Hertig W., Riechelmann D.F.C., Scholz D., Riechelmann S., Immenhauser A., Richter D.K., Fohlmeister J., Wackerbarth A., Mangini A., Spötl C. (2013), Reconstruction of drip-water δ¹⁸O based on calcite oxygen and clumped isotopes of kinetic speleothems from Bunker Cave (Germany). Climate of the Past, 9, 377-391. doi: http://dx.doi.org/10.5194/cp-9-377-2013.
  7. Peters, N. A., K. W. Huntington, and G. D. Hoke (2013), Hot or not? Imact of seasonally variable soil carbonate formation on paleotemperature and O-isotope records from clumped isotope thermometry, Earth Planet. Sci. Lett., 361, 208-218. doi: 10.1016/j.epsl.2012.10.024.
  8. Brand, U., R. Posenato, R. Came , H. Affek, L. Angiolini , K. Azmy, and E. Farabegoli (2012) The end Permian mass extinction: a volcanic CO2 – climatic global catastrophe. Chem. Geol., 322-323, 121-144. doi: 10.1016/j.chemgeo.2012.06.015
  9. Suarez, M. B., B. H. Passey, and A. Kaakinen (2011), Paleosol carbonate multiple isotopologue signature of active East Asian summer monsoons during the late Miocene and Pliocene, Geology, 39(12), 1151-1154. doi: 10.1130/G32350.1
  10. Keating-Bitonti, C., L. C. Ivany, H. P. Affek, P. Douglas, and Samson S. D. (2011) Warm, not super-hot, temperatures in the early Eocene subtropics, Geology, 39(8), 771-774. doi: 10.1130/G32054.1
  11. Csank A. Z., A. K. Tripati, W. P. Patterson, R. A. Eagle, N. Rybczynski, A. P. Ballantyne, J. M. Eiler (2011), Estimates of Arctic land surface temperatures during the early Pliocene from two novel proxies, Earth Planet. Sci. Lett., 304(3-4), 291-299. doi: 10.1016/j.epsl.2011.02.030.
  12. Finnegan, S., K. Bergmann, J. M. Eiler, D. S. Jones, D. A. Fike, I. Eisenman, N. C. Hughes, A. K. Tripati, and W. W. Fischer (2011), The magnitude and duration of late Ordovician-early Silurian glaciation, Science, 331(6019), 903-906. doi: 10.1126/science.1200803.
  13. Passey, B. H., N. E. Levin, T. E. Cerling, F. H. Brown, and J. M. Eiler (2010), High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates, Proc. Natl. Acad. Sci. USA, 107(25), 11245-11249. doi: 10.1073/pnas.1001824107.
  14. Came, R. E., J. M. Eiler, J. Veizer, K. Azmy, U. Brand, and C. R. Weidman (2007), Coupling of surface temperatures and atmospheric CO2 concentrations during the Palaeozoic era, Nature, 449(7159), 198-201. doi: 10.1038/nature06085

Paleoaltimetry

  1. Quade, J., D. O. Breecker, M. Daëron, and J. Eiler (2011), The paleoaltimetry of Tibet: An isotopic perspective, Am. J. Sci., 311(2), 77-115. doi:10.2475/02.2011.01.
  2. Huntington, K. W., B. P. Wernicke, and J. M. Eiler (2010), Influence of climate change and uplift on Colorado Plateau paleotemperatures from carbonate clumped isotope thermometry, Tectonics, 29, TC3005. doi: 10.1029/2009TC002449.
  3. Garzione, C. N., G. D. Hoke, J. C. Libarkin, S. Withers, B. MacFadden, J. Eiler, P. Ghosh, and A. Mulch, Rise of the Andes, Science, 320(5881), 1304-1307. doi: 10.1126/science.1148615; Correction.
  4. Ghosh, P., C. N. Garzione, and J. M. Eiler (2006), Rapid uplift of the Altiplano revealed through 13C-18O bonds in paleosol carbonates, Science, 311(5760), 511-515. doi: 10.1126/science.1119365; Technical comment by Sempere et al.; Response from Ghosh et al.

Paleobiology

  1. Zaarur, S., G. Olack, and H.P. Affek (2011), Paleo-environmental implications of clumped isotopes in land snail shells, Geochim. Cosmochim. Acta, 75(22), 6859-6869. doi: 10.1016/j.gca.2011.08.044.
  2. Eagle, R. A., T. Tütken, T. S. Martin, A. K. Tripati, H. C. Fricke, M. Connely, R. L. Cifelli, and J. M. Eiler (2011), Dinosaur body temperatures determined from isotopic (13C-18O) ordering in fossil biominerals, Science, 333(6041), 443-445. doi: 10.1126/science.1206196.
  3. Eagle, R. A., E. A. Schauble, A. K. Tripati, T. Tütken, R. C. Hulbert, and J. M. Eiler (2010), Body temperatures of modern and extinct vertebrates from 13C-18O bond abundances in bioapatite, Proc. Natl. Acad. Sci. USA, 107(23), 10377-10382. doi: 10.1073/pnas.0911115107.

Meteoritics

  1. Halevy, I., W. W. Fischer, and J. M. Eiler (2011), Carbonates in the Martian meteorite Allan Hills 84001 formed at 18 ± 4 °C in a near-surface aqueous environment, Proc. Natl. Acad. Sci. USA, 108(41), 16895-16899. doi: 10.1073/pnas.1109444108
  2. Guo, W., and J. M. Eiler (2007), Temperatures of aqueous alteration and evidence for methane generation on the parent bodies of the CM chondrites, Geochim. Cosmochim. Acta, 71(22), 5565-5575. doi: 10.1016/j.gca.2007.07.029

Atmospheric Chemistry

  1. Yeung, L. Y., J. L. Ash, and E. D. Young (2014), Rapid photochemical equilibration of isotopic bond ordering in O2, J. Geophys. Res, 119, 10552-10566. doi: 10.1002/2014JD021909
  2. Affek, H. P.(2013), Clumped isotopic equilibrium and the rate of isotope exchange between CO2 and water, Am. J. Sci., 313, 309-315. doi: http://dx.doi.org/10.2475/04.2013.02
  3. Yeung, L. Y., E. D. Young, and E. A. Schauble (2012), Measurements of 18O18O and 17O18O in the atmosphere and the role of isotope-exchange reactions, J. Geophys. Res, 117, D18306. doi: 10.1029/2012JD017992
  4. Yeung, L. Y., H. P. Affek, K. J. Hoag, W. Guo, A. A. Wiegel, E. L. Atlas, S. M. Schauffler, M. Okumura, K. A. Boering, and J. M. Eiler (2009), Large and unexpected enrichment in stratospheric 16O13C18O and its meridional variation, Proc. Natl. Acad. Sci. USA, 106(28), 11496-11501. doi: 10.1073/pnas.0902930106; Correction
  5. Affek, H. P., X. Xu, and J. M. Eiler (2007), Seasonal and diurnal variations of 13C18O16O in air: Initial observations from Pasadena, CA, Geochim. Cosmochim. Acta, 71, 5033-5043. doi: 10.1016/j.gca.2007.08.014
  6. Affek, H. P., and J. M. Eiler (2006), Abundance of mass-47 CO2 in urban air, car exhaust and human breath, Geochim. Cosmochim. Acta, 70(1), 1-12. doi: 10.1016/j.gca.2005.08.021
  7. Eiler, J. M., and E. Schauble (2004), 18O13C16O in the Earth's atmosphere, Geochim. Cosmochim. Acta, 68(23), 4767-4777. doi: 10.1016/j.gca.2004.05.035

Petrology, diagenesis and lithospheric applications

  1. Loyd S., Dickson, J.A.D., Scholle, P.A., Tripati, A.K. (2012), Extensive, uplift-related and non-fault-controlled spar precipitation in the Permian Capitan Formation, Sedimentary Geology, 298, 17-27. doi: http://dx.doi.org/10.1016/j.sedgeo.2013.10.001
  2. Dale A., John C.M., Mozley P., Smalley P.C., Muggeridge A.H. (2014) Time-capsule concretions: unlocking burial diagenetic processes in the Mancos Shale using carbonate clumped isotopes. EARTH AND PLANETARY SCIENCE LETTERS, printed online 3 March 2014. doi: http://dx.doi.org/10.1016/j.epsl.2014.03.004
  3. Loyd S., Corsetti F., Eiler J., Tripati, A.K. (2012), Determining the diagenetic conditions of concretion formation: Assessing temperatures and pore-waters using clumped isotopes, Journal of Sedimentary Research Current Ripples, 82, 1006-1016. doi: http://dx.doi.org/10.2110/jsr.2012.85
  4. Passey, B. H. and G. A. Henkes (2012), Carbonate clumped isotope bond reordering and geospeedometry, Earth Planet. Sci. Lett., 351-352, 223-236. doi:10.1016/j.epsl.2012.07.021.
  5. Swanson, E. M., B. P. Wernicke, J. M. Eiler, and S. Losh (2012), Temperatures and fluids on faults based on carbonate clumped-isotope thermometry, Am. J. Sci., 312(1), 1-21. doi:10.2475/01.2012.01.
  6. Huntington, K. W., D. A. Budd, B. P. Wernicke, and J. M. Eiler (2011), Use of clumped-isotope thermometry to constrain the crystallization temperature of diagenetic calcite, J. Sediment. Res., 81(9), 656-669. doi:10.2110/jsr.2011.51.
  7. Bristow, T. F., M. Bonafacie, A. Derkowski, J. M. Eiler, and J. P. Grotzinger (2011), A hydrothermal origin for isotopically anomalous cap dolostone cements from south China, Nature, 474(7349), 68-71. doi: 10.1038/nature10096.
  8. Ferry, J. M., B. H. Passey, C. Vasconcelos, and J. M. Eiler (2011), Formation of dolomite at 40-80°C in the Latemar carbonate buildup, Dolomites, Italy, from clumped isotope thermometry, Geology, 39(6), 571-574. doi: 10.1130/G31845.1.
  9. Dennis, K. J., and D. P. Schrag (2010), Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration, Geochim. Cosmochim. Acta., 74(14), 4110-4122. doi: 10.1016/j.gca.2010.04.005

Non equilibrium

  1. Kluge T. Affek H.P., Spötl C. Dubliansky Y. Devils Hole paleotemperatures and implications for oxygen isotope equilibrium fractionation. Earth and Planetary Research Letters. In press.
  2. Kluge, T., Affek, H.P., Zhang, Y.G., Dublyanski, Y., Spötl, C., Immenhauser, A., Richter, D.A.,. (2014) Clumped isotope thermometry of cryogenic cave carbonates. Geochimica et Cosmochimica Acta. 126, 541-554. doi: http://dx.doi.org/10.1016/j.gca.2013.11.011
  3. Saenger, C., H.P. Affek, T. Felis, N. Thiagarajan, J.M. Lough, and M. Holcomb (2012), Carbonate clumped isotope variability in shallow water corals: Temperature dependence and growth-related vital effects. Geochim. Cosmochim. Acta, 99, 224-242. doi: 10.1016/j.gca.2012.09.035.
  4. Kluge, T., and H. P. Affek (2012) Quantifying kinetic fractionation in Bunker cave speleothems using Δ47. Quat. Sci. Rev., 49, 82-94. doi: 10.1016/j.quascirev.2012.06.013.
  5. Daëron, M., W. Guo, J. Eiler, D. Genty, D. Blamart, R. Boch, R. Drysdale, R. Maire, K. Wainer, and G. Zanchetta (2011), 13C18O clumping in speleothems: Observations from natural caves and precipitation experiments, Geochim. Cosmochim. Acta, 75(12), 3303-3317. doi: 10.1016/j.gca.2010.10.032.
  6. Affek, H. P., M. Bar-Matthews, A. Ayalon, A. Matthews, and J. M. Eiler (2008), Glacial/interglacial temperature variations in Soreq cave speleothems as recorded by ‘clumped isotope’ thermometry Geochim. Cosmochim. Acta, 72(22), 5351-5360. doi: 10.1016/j.gca.2008.06.031
papers.txt · Last modified: 2014/11/11 11:16 by aradhna_tripati