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A B S T R A C T   

Least-squares regression methods are mathematically powerful, conceptually and computationally simple, and 
widely used in many fields. However, none of the commonly-used flavors of least-squares regression, such as 
York regression or Generalized Least Squares (GLS), take into account the full set of covariances between all 
observed (x, y) values. Here we describe the Omnivariant Generalized Least Squares (OGLS) method to fit a 
model of the form y = f(x), accounting for the full error correlation structure of the (x, y) data, based on a first- 
order linear propagation of the uncertainties in all variables into errors in y residuals, followed by minimizing the 
vector of y residuals with respect to the Mahalanobis norm defined by its covariance matrix. This approach may 
be described as a generalization of both York regression and GLS. It is mathematically exact for straight-line fits, 
and is also suitable for many non-linear models. Here we describe the principles of OGLS regression and discuss 
its properties, caveats, and practical use, and provide two consistent open-source implementations in Python and 
R. To illustrate how various fields of geochronology and stable-isotope geochemistry may benefit from this new 
method, we discuss how OGLS may specifically apply to 40Ar/39Ar dating and how it provides robust mathe-
matical evidence that Δ47 carbonate calibrations in the recently defined I-CDES metrological scale are statisti-
cally indistinguishable, effectively solving long-standing methodological discrepancies.   

1. Introduction 

When investigating the physical laws of the natural world, we often 
find ourselves attempting to establish a mathematical relationship 
linking two or more numerical variables based on a set of observations. 
This is usually because we wish to estimate some parameter of this 
relationship (e.g., the slope of a regression line) or because we hope to 
use this relationship as a general model linking these variables in other 
data sets (e.g., when calibrating a thermometer). The use of such sub-
jective terms as wish and hope calls attention to the fact that regression 
analysis derives from an underlying purpose which strongly influences 
the choices we make when designing regression models. In a general 
sense, determining optimal (“best-fitting”) model parameters is 
conceptually simple, however computationally difficult it may be, but 
this optimization step first requires us to decide what kind of mathe-
matical relationship is well-suited both to our objectives and to the data 
available, and to define explicitly what “best-fitting” means, which 

usually requires assigning statistical weights to the observations. After 
this parameter optimization step, it is often useful to assess the quality of 
the resulting model, usually based on some goodness-of-fit statistic; to 
check, ideally using objective mathematical methods, whether some 
observations deviate anomalously from the model; to estimate the pre-
dictive power of the model, e.g., expressed as prediction confidence 
intervals; to estimate confidence intervals for the best-fitting parameters 
of interest. 

All of the above steps depend, in one way or another, on the statis-
tical weight assigned a priori to each datum, or, equivalently, on char-
acterizing the uncertainties associated with a set of observations. 
Geochemistry has a long tradition of paying proper attention to mea-
surement uncertainties and their propagation into quantitative in-
terpretations. In many cases — such as virtually all of geochronology — 
these uncertainties are one of the primary factors limiting in-
terpretations, leading to the creation of specialized mathematical 
frameworks aiming to model and propagate various sources of uncer-
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tainty as accurately as possible [e.g., Ludwig, 1998; McLean et al., 2011; 
Vermeesch, 2018; Daëron, 2021]. One notable feature of geochemical 
observations is that measurement errors are often correlated in one way 
of the other. In Pb-Pb dating, for instance, when measuring the isotopic 
ratios 206Pb/204Pb and 207Pb/204Pb, large uncertainties in the determi-
nation of 204Pb contribute simultaneously to both ratios, and this shared 
source of uncertainty causes statistical errors in the two ratios to be 
positively correlated [Connelly et al., 2021]. Another kind of error 
covariance occurs when a group of analyses are corrected/standardized 
based on a common set of reference material measurements. If the 
analytical uncertainty derived from this correction step is large enough, 
errors in the corrected measurements may be correlated in complex but 
non-negligible ways [e.g., Daëron, 2021]. In the most general case, es-
timates of the analytical uncertainties associated with a set of N scalar 
measurements are described by a probability density function over the 
N-dimensional measurement space, but this can often be simplified to a 
multivariate Gaussian probability distribution which is fully character-
ized by a N × N “variance-covariance” matrix specifying the uncertainty 
(or variance, or standard error) of each measured quantity along with 
the the correlations (or covariances) between these measurement errors. 

There is a large body of work on how to propagate these non- 
independent measurement uncertainties when fitting regression 
models — or, more generally, when solving any kind of inverse problem 
— using different but related mathematical formalisms such as 
maximum-likelihood estimation, Bayesian inference, or least-squares 
estimation. Among these approaches, least-squares methods are most 
widely used (and taught) because they are conceptually and computa-
tionally simple. Although it is well known that least squares are not 
robust against statistical outliers, geochemical measurements usually 
undergo quality-control procedures which are expected, at least in 
theory, to largely mitigate this issue. 

Different “flavors” of least-squares regression with somewhat 
ambiguous denominations are widely used, each corresponding to a 
different assigment of statistical weights (or, equivalently, to different 
structures of observation uncertainties). For instance, “Ordinary Least 
Squares” only considers equally-weighted regression residuals on a 
“response” variable (the y scalar, in the classical case of fitting y as a 
function of x), whereas “Orthogonal Distance Least Squares” assigns the 
same weights to residuals on both predictor and response variables 
(x, y), and “Generalized Least Squares” only considers errors in the 
response variable but takes error correlations into account. Section 2.3 
provides a brief overview of these different methods. 

The least squares formulation with the most general specification of 
observation uncertainties, i.e. the only one allowing for arbitrarily 
complex correlation between all errors, is “Weighted Total Least 
Squares” [Kukush and Van Huffel, 2004; Markovsky and Van Huffel, 
2007]. However, to the best of our knowledge, this approach is virtually 
never used by geochemists, most likely because it is usually described in 
the context — and using the jargon — of linear algebra. What's more, 
although Total Least Squares as traditionally defined [Golub and Van 
Loan, 1980; Van Huffel and Vandewalle, 1991] is, strictly speaking, a 
linear regression problem, it should be possible in many cases to solve 
non-linear regression problems using a modified weighted total least 
squares approach. 

Here we propose a new formulation for non-linear least-squares 
regression of observational data with Gaussian error distributions and 
arbitrarily complex error correlations between all variables, based on a 
first-order linear propagation of the uncertainties in all variables into 
errors in response residuals, followed by minimizing the vector of 
response residuals with respect to the Mahalanobis norm defined by its 
covariance matrix. Because such verbiage is likely to scare off most 
geochemists, we will devote a large part of this article to reformulating 
the above description in layman's terms. For now, this “Omnivariant 
Generalized Least Squares” (OGLS) approach can be considered an even 
more general version of Generalized Least Squares accounting for arbi-
trary covariances between all predictor and response variables. In the 

first two sections we start by summarizing the broader context of least- 
squares methods, before describing the theoretical basis of OGLS and 
addressing various practical issues including goodness-of-fit tests. Based 
on this detailed description and the accompanying open-source imple-
mentation, it should be straightforward to apply OGLS to a wide array of 
scientific fields. 

Section 4 describes the application of OGLS to linear regression in the 
geochronological context of two-dimensional isochron fitting. Although 
geochronologists have long recognized the importance of error corre-
lations between the dependent and independent variables in isochron 
regression, they have only recently started to appreciate the existence of 
significant error correlations between different aliquots of the same 
sample. By accounting for these inter-sample error correlations, OGLS 
improves both the accuracy and precision of the resulting age estimates. 
Section 4.3 also shows how excess dispersion of the isotopic data around 
the best fit line can be quantified using the method of maximum like-
lihood, which builds on the OGLS algorithm. 

Section 5 applies OGLS to stable isotope geochemistry, revisiting the 
thorny issue of carbonate clumped-isotope calibrations, which are 
characterized by sizable and blockwise-correlated uncertainties in both 
the predictor (temperature) and the response (Δ47) variables. We 
conclude, based on OGLS-adapted goodness-of-fit estimates, that Δ47 
calibration data sets (re)processed in the new I-CDES metrological scale 
are in statistical agreement with each other, and that a single quadratic 
calibration function provides a good fit to the whole data set (N = 104). 
This finding, if it holds true, marks another milestone in the progress of 
clumped-isotope thermometry, which has long been plagued by dis-
crepancies in calibration data reported by different groups. 

As noted above, regression analysis is rooted in purpose. We, the 
authors, very recently found out that we had both been working for 
years on a more general least-squares approach and that, despite being 
motivated by entirely distinct applications, our efforts had indepen-
dently converged to essentially the same mathematical solution. We 
decided that the best course of action was to combine our findings into a 
single manuscript explicitly addressing both of the separate problems 
that initially prompted our work. This article represents an 80/20 split 
of contributions. MD wrote the entire paper except for Section 3 and the 
toy examples of Fig. 2, which were contributed by PV. MD wrote the 
implementation of OGLS in Python, whereas PV wrote the imple-
mentation in R. 

2. Background 

2.1. Notation 

Scalars are printed in italics (e.g., “x”). Vectors are typeset in 
lowercase boldface and are considered to be column vectors by default, 
with vector elements indexed from top to bottom: 

x = [xi] =

⎛

⎜
⎜
⎜
⎜
⎝

x1
x2
⋮
xn

⎞

⎟
⎟
⎟
⎟
⎠

x⊤ = [xi]
⊤
= (x1 x2 … xn)

Matrices are typeset in uppercase boldface, with elements indexed 
from top to bottom then from left to right: 

X =
[
xi,j
]
=

⎛

⎜
⎜
⎜
⎜
⎝

x1,1 x1,2 … x1,n
x2,1 x2,2 … x2,n
⋮ ⋮ ⋮

xm,1 xm,2 … xm,n

⎞

⎟
⎟
⎟
⎟
⎠

A matrix can also be represented as a combination of smaller 
matrices. In that case, enclosing parentheses are replaced by square 
brackets: 
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A =

(
a1,1 a1,2

a2,1 a2,2

)

B =

(
b1,1 b1,2

b2,1 b2,2

)

[
A B

B⊤ A

]

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1,1 a1,2 b1,1 b1,2

a2,1 a2,2 b2,1 b2,2

b1,1 b2,1 a1,1 a1,2

b1,2 b2,2 a2,1 a2,2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

2.2. Characterizing correlations between measurement uncertainties 

Here we consider random, zero-centered, Gaussian measurement 
errors affecting a series of measurements or analyses, hereafter called 
observations. We will mostly limit ourselves to two-dimensional obser-
vations, where each datum is described by two scalars (x, y), but OGLS 
applies equally well to multi-dimensional predictor and response 
variables. 

As mentioned above, analytical errors in geochemistry are often 
correlated with each other. Let us consider a set of N observations noted 
(
xi, yi

)
, noting x = [xi] and y =

[
yi
]
. In the most general case, the 

observational uncertainties associated with these xi and yi values can be 
described by a 2N × 2N covariance matrix: 

V =

[
Vy Vyx

V⊤
yx Vx

]

(1)  

where Vy is the variance-covariance matrix for 
[
yi
]

values, Vx that for 
[xi] values, and Vyx is the (non-symmetric) matrix of all covariances 
between yi and xj, noted ωyixj : 

Vy =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

σ2
y1

ωy1y2 … ωy1yN

ωy1y2 σ2
y2

… ωy2yN

⋮ ⋮ ⋮

ωy1yN ωy2yN … σ2
yN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Vx =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

σ2
x1

ωx1x2 … ωx1xN

ωx1x2 σ2
x2

… ωx2xN

⋮ ⋮ ⋮

ωx1xN ωx2xN … σ2
xN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2)  

Vyx =

⎛

⎜
⎜
⎜
⎜
⎝

ωy1x1 ωy1x2 … ωy1xN

ωy2x1 ωy2x2 … ωy2xN

⋮ ⋮ ⋮
ωyN x1 ωyN x2 … ωyN xN

⎞

⎟
⎟
⎟
⎟
⎠

(3) 

The diagonal elements of Vy and Vx correspond to the uncertainties 
(statistical variance) associated with each yi and xi value, respectively. 
The diagonal elements of Vyx describe the covariance between x and y 
within each datum (xi, yi). When plotting observations in (x, y) space, 
these covariance terms are usually displayed using error ellipses instead 
of error bars (Fig. 1), making it obvious whether errors in x and y are 
independent, positively correlated, or anti-correlated. 

We lack a generally accepted graphical representation for the non- 
diagonal terms ωyiyj in Vy, which characterize the covariances between 
these yi values. When the measurements of yi and yj are statistically 
independent, these non-diagonal terms are equal to zero, but this is not 
necessarily the case, because some source(s) of uncertainty may be 
shared by several measurements (e.g., when taking into account un-
certainties associated with correction/standardization procedures). The 
same applies to non-diagonal elements of Vx. 

Non-diagonal elements of Vyx (ωyixj with i ∕= j) are zero in most cases 

because the uncertainty of the predictor variable xj for one observation 
is usually not correlated with that of the response variable yi for a 
different observation. Nevertheless, for the sake of generality, we also 
consider here non-zero ωyixj values. 

2.3. Least-squares regression 

2.3.1. Ordinary, weighted, and generalized least-squares regression 
Least-squares methods were developped independently by Legendre 

[1805] and Gauss [1809], both of whom used them to predict the tra-
jectories of heavenly bodies. Least-squares regression postulates that the 
optimal model to describe an over-determined set of 

(
xi, yi

)
observations 

with 1⩽i⩽N, among a family of models of the form y = f
(

x, p1, p2…pNp

)
, 

where 
(

p1, p2…pNp

)
are the model parameters, is that which minimizes 

the sum of square residuals along the y dimension, e.g.: 

χ2 =
∑N

i=1
(yi − f (xi, p1, p2…) )

2 (4) 

This quantity is a χ2 statistic summarizing the differences between 
observed and predicted y values. The above formula corresponds to 
Ordinary Least Squares (OLS), the simplest version of least-squares 
regression, in which the residuals are not scaled in any way, so that χ2 

has the same dimension as y2. 
A slighty different method named Weighted Least Squares (WLS) 

scales each residual term by a weight usually equal to the inverse 
squared uncertainty (or squared standard error, or variance) of each yi 
observation: 

χ2 =
∑N

i=1

(
yi − f (xi, p1, p2…)

σyi

)2

(5) 

In that case χ2 is dimensionless and, if the weighted residuals are 
statistically independent and normally distributed with a variance of 1, 
the minimized value of χ2 should follow a chi-squared distribution with 

Nf =
(
N − Np

)
degrees of freedom 

(
χ2

Nf

)
. The mean of this distribution is 

equal to Nf , which leads naturally to considering the “reduced” χ2 value 
— defined as χ2/Nf —, also called mean squared weighted deviation 

Fig. 1. Example of covariance between x and y within each observation. Pro-
jecting these (207Pb/235U, 206Pb/238U) observations on the concordia line must 
take into account the strong covariance of the two measurements, strongly 
influencing the final ages. Plot modified from Fig. 1A of Costa et al. [2020]. 

M. Daëron and P. Vermeesch                                                                                                                                                                                                                



Chemical Geology 647 (2024) 121881

4

(MSWD) in geochronology. Because the expected mean value of χ2/Nf is 
equal to one and its variance inversely proportional to Nf , it can be used 
as a goodness-of-fit criterion when Nf is large enough [Wendt and Carl, 
1991]. Fig. 2A compares OLS and WLS regression using a simple 
example of three colinear points, where the y value of the third point is 
ten times less precise than the other y values. In this situation, WLS 
yields results far more accurate than OLS. 

If the residuals terms in Eq. (5) are not statistically independent from 
each other, we may instead use Generalized Least Squares (GLS), where χ2 

is reformulated to account for the full covariance structure of the 
[
yi
]

vector: 

χ2 = ry V− 1
y ry with Vy defined in (2) and ry =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

y1 − f (x1,p1,p2…)

y2 − f (x2,p1,p2…)

⋮
yN − f (xN ,p1,p2…)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(6) 

From this brief overview it should be clear that Eq. (4) can be viewed 
as a special case of (5), which is itself a special case of (6), and that 
Generalized Least Squares, despite its name, ignores all observational 
uncertainties on [xi] values. 

2.3.2. Least-squares regression with multivariate uncertainties 
In many cases, only considering uncertainties in the y dimension is 

not a valid option. Going back to Adcock [1878] and Kummell [1879], 
various “errors-in-variables” methods have been formulated to perform 
least-squares regression on data with comparably large errors in both x 
and y. A well-known example is Orthogonal Distance Regression (ODR), 
which minimizes the sum of squared orthogonal distances between (x, y)
observations and a straight regression line. The more general straight 
line regression method of York et al. [2004] takes into account arbitrary 
uncertainties in all xi and yi values (the diagonal elements of Vy and Vx), 
as well as the covariance between xi and yi within each observation (the 
diagonal elements of Vyx). Fig. 2B illustrates the benefits of York 

Fig. 2. Three toy examples illustrating of the benefits of error-weighted linear regression. In all threes cases the true x and y values (black circles) belong to a straight 
line (in yellow) with a slope of 1 and an intercept of 10. White squares represent random realizations of these samples, given Gaussian uncertainties shown as 95% 
confidence bars or ellipses. Panel A: given three samples with uncertainties only in the y variable, OLS regression ignores these uncertainties, resulting in a poor fit 
compared to WLS. Panel B: given three samples, each having correlated (x, y) uncertainties (listed in Table 2), ODR regression ignores these correlations, resulting in 
a poor fit compared to York regression. Panel C: given four samples whose uncertainties are not only correlated within each sample, but also between samples (see 
Table 3), York regression ignores these inter-sample correlations, resulting in a poor fit compared to the (equivalent) OGLS and WTLS regression. In each of these 
three cases, the most accurate results are obtained by properly taking into account all relevant sources of error correlation. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Synthetic data for toy example of Fig. 2B.   

True Observed    

i xi yi xi yi σxi σyi σ2
xiyi 

1 10 20 10 20 1 1 + 0.9 
2 20 30 20 30 1 1 + 0.9 
3 30 40 28 42 1 1 − 0.9  

Table 1 
Notations.  

N number of (x, y) observations 
Np number of model parameters 
Nf number of model degrees of freedom, usually equal to 

(
N − Np

)

f model function linking x and y, with y = f(x, p)
x N-vector of x observations 
y N-vector of y observations 
ξ N-vector of error-free (“true”) values of x 
ζ N-vector of Cholesky residuals 
p Np-vector of model parameters 
p* Np-vector of the best-fit model parameters 
ry vector of model residuals in the y dimension 
rx vector of model residuals in the x dimension 
r*

y vector of the best-fit model residuals in the y dimension 

σ2
x variance of x 

ρxy correlation of (x, y)
ωxy covariance of (x, y), equal to ρxyσxσy 

Vx N × N covariance matrix of [xi]

Vy N × N covariance matrix of 
[
yi
]

Vyx N × N covariance matrix between 
[
yi
]

and [xi]

V 2N × 2N covariance matrix of (y1, y2,…, x1, x2…)

Vry N × N covariance matrix of ry 

Vp* Np × Np covariance matrix of p* 

Jry N × 2N Jacobian matrix of ry with respect to (y1, y2 ,…, x1, x2…)

Jf |p Jacobian matrix of f with respect to p  
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regression over ODR regression using another three-point toy example. 
Beyond straight line regressions, accounting for bivariate un-

certainties in least-square models can be achieved by using a modified 
version of WLS based on replacing each σ2

yi 
variance in (5) with the 

corresponding effective variance (EV), noted σ2
e [Tellinghuisen, 2020]: 

σ2
e(xi, yi) = σ2

yi
+

(
∂f
∂x

(xi)

)2

⋅σ2
xi

(7) 

This formula assumes that xi and yi are not correlated, but otherwise 
the effective variance may be reformulated as: 

σ2
e(xi, yi) = σ2

yi
+

(
∂f
∂x

(xi)

)2

⋅σ2
xi
− 2⋅

∂f
∂x

(xi)⋅ωxiyi (8)  

which corresponds exactly to York's regression in the case of a straight- 
line fit. Once again, ODR can be viewed as a special case of York 
regression, itself a special case of the EV method, all of which take only 
partially into account the full covariance structure of observations. 

2.3.3. Total Variance methods 
All of the previous methods seek to minimize, with different 

weighting choices, the squared sum of residuals in the response variable 
(y). A different approach, usually attributed to Deming [1943] and more 
recently labeled Weighted Total Least Squares (WTLS), almost entirely 
forgoes the distinction between predictor and response variables by 
aiming to minimize the total variance (TV), defined as: 

TV = ry
⊤⋅V− 1

y ⋅ry + rx
⊤ ⋅V− 1

x ⋅rx (9)  

where rx and ry are the residual vectors or x and y observations relative 
to their error-free (“true”) values: 

rx = [xi − ξi] ξi being the error − free value of xi
ry = [yi − f (ξi, p1, p2…) ]

(10) 

WTLS can be slightly reformulated to also account for Vyx terms: 

TV =

[
ry
rx

]⊤

⋅

[
Vy Vyx

V⊤
yx Vx

]− 1

⋅

[
ry
rx

]

(11) 

Total least-squares methods were reviewed by Markovsky and Van 
Huffel [2007]. Fig. 2C illustrates their benefits over York regression 
using the four-sample toy dataset shown in Table 3. To say the least, they 
have never been very popular among geochemists, among other factors 
because they are defined and discussed using the specialized idiom of 
linear algebra. What's more, whereas solving a traditional least-squares 
problem requires optimizing only the model parameters [pi], WTLS needs 
to find an optimal combination of [pi] and [ξi], considerably increasing 
the dimensionality of the parameter space to explore. As a result, many 
“simple” regressions with a small number of model parameters and a few 
tens of observations quickly become challenging from a computational 
point of view. A notable exception is the case of fitting a straight line, 

which may be solved analytically using the maximum likelihood algo-
rithm described below (Section 4.3). 

3. Omnivariant Generalized Least-Square regression 

3.1. General formulation 

Going back to the GLS definition of χ2 (Eq. (6) above), this formu-
lation corresponds to the squared Mahalanobis distance between r and a 
zero-centered statistical distribution of r based on Vy. The Mahalanobis 
distance is a multivariate generalization of a Z-score, or “number of 
standard deviations” [cf De Maesschalck et al., 2000]. In three- 
dimensional Euclidean space, the isosurface corresponding to a 
Euclidean distance of one from the null vector is a sphere. By contrast, 
given any covariance matrix V, we can define the corresponding 
Mahalanobis distance MV, and the isosurface defined by MV = 1 is an 
ellipsoid whose half principal dimensions are the square-root eigen-
values of V, and whose principal axes are oriented according to the 
correlation structure of V. By design, minimizing the Mahalanobis 
length of r thus accounts for scaling the residuals according to their 
observational standard errors (as in simple WLS) but also for the sta-
tistical correlations between them. 

Here, we propose to combine the Mahalanobis distance criterion of 
GLS with a generalized version of effective variance to take into account 
the entire covariance structure of (x, y). To clearly distinguish this 
approach from existing methods, we propose, somewhat presumptu-
ously, the denomination “Omnivariant Generalized Least Squares” 
(OGLS). 

In essence, the key feature of OGLS is to express Vry , the covariance 
matrix of ry, using the classical first-order expansion for error propa-
gation: 

Vry = Jry
⊤⋅

[
Vy Vyx

V⊤
yx Vx

]

⋅Jry (12)  

with Jry being the Jacobian of ry relative to [y1, y2,…, x1, x2,…]. For 
example, in the simple case of three observations (x1, y1), (x2, y2), and 
(
x3, y3

)
: 

Jry =

⎛

⎜
⎝

1 0 0 − ∂f/∂x1 0 0
0 1 0 0 − ∂f/∂x2 0
0 0 1 0 0 − ∂f/∂x3

⎞

⎟
⎠

T

(13) 

In practice, ry and Jry both depend on the regression parameters. 
Minimizing the squared Mahalanobis distance r⊤y V− 1

ry
ry thus needs to be 

done numerically, using one of many available optimization methods. 
Leaving the implementation details aside, it bears pointing out that each 
of the least-squares methods considered in Sections 2.3.1 and 2.3.2 
(OLS, WLS, GLS, ODR, York/EV regression) can be expressed as 
restricted cases of OGLS regression (Fig. 3). 

Table 3 
Synthetic data for toy example of Fig. 2C. The true x and y are (10,20,30,40) and (20,30,40,50), 
respectively, consistent with an intercept of 10 and a slope of 1.  

y =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

21

31

39

49

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

x =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

9

19

31

41

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

cov

⎛

⎝

⎡

⎣
y

x

⎤

⎦

⎞

⎠ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0.99 0 0 − 0.99 − 0.99 0 0

0.99 1 0 0 − 0.99 − 0.99 0 0

0 0 1 0.99 0 0 − 0.99 − 0.99

0 0 0.99 1 0 0 − 0.99 − 0.99

− 0.99 − 0.99 0 0 1 0.99 0 0

− 0.99 − 0.99 0 0 0.99 1 0 0

0 0 − 0.99 − 0.99 0 0 1 0.99

0 0 − 0.99 − 0.99 0 0 0.99 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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3.2. Properties 

In the following section we consider a few simple examples of 
polynomial regression and briefly discuss some general properties of 
OGLS models. 

3.2.1. Equivalence with York regression 
York et al. [2004] only account for the diagonal elements of Vx, Vy 

and Vyx (Fig. 3e). In this approach, the weight Wi assigned to each 
(
xi, yi

)
observation is the inverse effective variance, depending on σ2

xi
, 

σ2
yi

, ωxiyi , and b, the slope of the regression line: 

Wi =
1

σ2
e(xi, yi)

=
1

σ2
yi
+ bσ2

xi
− 2bωxiyi

from Table I of York et al.

[

2004

]

(14) 

Going back to the OGLS formulation, the Jacobian for the residuals of 
a straight-line model of slope b is (e.g., for N = 3 observations): 

Jry =

⎛

⎜
⎝

1 0 0 − b 0 0
0 1 0 0 − b 0
0 0 1 0 0 − b

⎞

⎟
⎠

T

(15) 

As a result, the covariance matrix of the residuals is: 

Vry =

⎛

⎜
⎜
⎝

σ2
e(x1, y1) 0 0

0 σ2
e(x2, y2) 0

0 0 σ2
e

(
x3, y3

)

⎞

⎟
⎟
⎠ (16) 

York regression is thus mathematically equivalent to a straight-line 
OGLS regression with diagonal Vy, Vx and Vyx matrices, and, as illus-
trated in Fig. 4, both methods yield identical results within numerical 
precision. 

3.2.2. Effects of different types of covariance 
Two different kinds of observation covariance are frequently 

encountered in geochemical data. In the first case, the 
(
xi, yi

)
pairs of 

observations are statistically independent from each other, but errors in 

Fig. 4. OGLS and York regression yield identical results. The (x, y) data shown 
here correspond to the (in)famous Pearson/York data set [York, 1966]. Pro-
cessing these data using OGLS regression or the straight-line fitting method of 
York et al. [2004] yields identical results. Error bars, dashed lines and the 
yellow area indicate 95% confidence regions of data points, York best-fit line, 
and OGLS line, respectively. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Various classical least-squares regression methods, which differ primarily in how they account for observation uncertainties, may be described as special cases 
of a general formulation taking into account the full covariance matrix V of all x and y values (Eq. (1)), as illustrated here in the simple case of three observations 
(x1, y1), (x2, y2), and 

(
x3, y3

)
. 
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xi and yi may be correlated (e.g., Fig. 1). These correlations not only 
affect the best-fit values of regression parameters, but may also strongly 
influence the final model uncertainties, as illustrated in Fig. 5. In 
geochronology, properly accounting for this type of covariance is a 
crucial requirement for many dating methods [e.g., Vermeesch, 2018]. 

Another situation is that when x or y values belonging to different 
observations (e.g., xi and yj, with i ∕= j) are not statistically independent. 
This situation arises naturally when the uncertainty introduced by our 
correction/standardization procedures are large enough compared to 
other sources of analytical errors [e.g. Daëron, 2021]. Once again, these 
correlations may strongly affect regression results and model un-
certainties. Fig. 6 illustrates, for example, how the standard error for the 
slope of a straight-line regression constrained by three data points de-
pends quite strongly on the sign and magnitude of the correlation be-
tween the y values. 

OGLS is able to properly propagate these different kinds of covari-
ance, with a small number of caveats to consider. In the following sec-
tion, we briefly discuss these limitations and how to mitigate them. 

3.2.3. Caveats and best practices 

3.2.3.1. Limitations of a first-order linear error propagation. The contri-
butions of x uncertainties to the residuals covariance Vry depend criti-
cally on the local values of ∂f/∂x. Fig. 7 illustrates how this may be 
problematic in some cases: in that example, one of the observations 
(
x3, y3

)
has a large x uncertainty. A truly optimal result would account 

for the fact that the 95% confidence region for 
(
x3, y3

)
is entirely 

consistent with the true function ftrue (dashed line in Fig. 7), so that the 
influence of that observation on the best-fit function should ideally be 
negligible. Yet, in this case, the best-fit OGLS model (yellow line in 
Fig. 7) deviates strongly from the true function. This is because, over the 
range of likely x3 values, the slope of ftrue varies substantially and ∂ftrue/

∂x(x3) happens to be zero. As a result, as the regression approaches an 
optimal version of f , the contribution of the uncertainty in x3 tends to 
zero, so that the fitting procedure only takes the y uncertainty into ac-
count for that observation. 

In practice, this issue only matters in the case of large relative vari-
ations in ∂f/∂x at a scale of ±σx. When in doubt, one may check whether 
the OGLS approximation still yields valid results by using Monte Carlo 
methods to randomly resample the observations and investigate how the 

Fig. 5. Influence of covariance between x and y within each observation. 
Square markers correspond to 

(
xi, yi

)
observations, with slanted 95% confi-

dence ellipses indicating positive or negative correlation ρxy between xi and yi. 
All other covariance terms ωxiyj (i ∕= j) are zero. Changing the sign of ρxy dis-
places the best-fit OGLS regression curve (yellow line) and has a strong influ-
ence on its 95% confidence band. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Influence of y covariance across observations. These three (x, y) ob-
servations have the same covariance structure in the three panels, except for 
ωy1y3 , with ρy1y3 

varying from − 0.9 to + 0.9, exerting a strong influence on the 
standard error of the regression slope. 

M. Daëron and P. Vermeesch                                                                                                                                                                                                                



Chemical Geology 647 (2024) 121881

8

best-fit parameters respond to these perturbations. 

3.2.3.2. Assignment of response and predictor variables. In some cases, 
such as fitting of a straight line, there is no natural choice for which 
quantity should be treated as a response (y) or a predictor (x) variable. 
Because OGLS accounts for x uncertainties using a first-order linear 
approximation, it is generally safer to assign the status of response 
variable to the quantity with larger observation uncertainties. When x 
and y do not have the same dimension (e.g, distance vs time), comparing 
their respective uncertainties is still possible by scaling x errors ac-
cording to the expected magnitude of ∂f/∂x [Tellinghuisen, 2020]. 

It also bears pointing out that, although OGLS regression yields 
equivalent results whether x or y observations are treated as the pre-
dictor/response variable when fitting a straight line, this is not generally 
the case for models where ∂f/∂x is not constant. This is a direct conse-
quence of estimating ∂f/∂x — and thus weighing the relative contribu-
tions of Vx, Vy and Vyx — at fixed values of the predictor variable. 

3.2.3.3. Convergence issues. OGLS regression, like most numerical 
optimization problems, requires some degree of care to ensure conver-

gence, i.e. to find the vector of model parameters 
(

p1, p2…pNp

)
mini-

mizing χ2 = ry
⊤⋅V− 1

ry
⋅ry. Convergence is facilitated when the initial 

choice of parameters is reasonably close to the optimal vector. A 
generally good choice of initial parameters can be obtained from one of 
the approaches described in Section 2.3. Although it has been pointed 
out that the iterative algorithms used by some effective variance 
methods may, in some cases, fail to reach an optimal solution when the 
initial model parameters are those computed from OLS [Chandler, 1972; 

Lybanon, 1984], this issue does not affect gradient descent algorithms 
such as the classical Levenberg-Marquardt method [Levenberg, 1944; 
Marquardt, 1963]. 

3.2.4. Standard errors of the best-fit regression parameters 
Most software implementations of nonlinear optimization also pro-

vide estimates of the covariance matrix and/or joint confidence regions 
of the best-fit model parameters, usually by computing the inverse 
Hessian matrix of χ2, or by explicitly mapping χ2 over the model 
parameter space. For strongly nonlinear problems, a proper character-
ization of the joint probability distribution of the best-fit parameters 
may require some version of a Monte Carlo simulation. In many cases, 
however, the regression problem is linear enough that the vector of best- 
fit parameters p* =

[
p*

i
]

may be treated as having a multivariate 
Gaussian distribution caracterized by its covariance matrix Vp* . In that 
case, the usual propagation rules may be used to estimate, for an arbi-
trary value of x, the standard error of the model prediction: 

σ2
model

(
f
(
x, p*

1, p
*
2…
) )

= J⊤
f |p⋅Vp* ⋅Jf |p

Jf |p =

[
∂f
∂pi

(
x, p*

1, p*
2…
)
] (17) 

For example, for a best-fit model of the form f(x) = ax+ b: 

σ2
model(ax+ b) = ( x 1 )⋅

(
σ2

a ωab

ωab σ2
b

)

⋅

(
x
1

)

= x2σ2
a + 2xωab + σ2

b

(18)  

3.2.5. Goodness-of-fit and Cholesky residuals 
Many tests for goodness-of-fit provide estimates of the likelihood (“p- 

values”) that an observed sample (in the statistical sense, i.e. a set of 
values) was drawn from a single assumed underlying probability dis-
tribution, such as a Gaussian distribution whose mean and variance 
were postulated a priori. In the context of least-squares regression, a 
common objective is to establishes whether the distribution of best-fit 
residuals r*

y differs from an expected N-dimensional Gaussian distribu-
tion. Even in the relatively simple case of WLS (i.e. only considering 
uncorrelated uncertainties on yi values), this requires transforming r*

y so 
that the expected variance in each dimension is one. In the context of 
WLS, this is done by computing the weighted residuals (or “weighted 
deviates”, or “Z-scores”) defined as: 

zi =
yi − f

(
xi, p*

1, p*
2,…

)

σyi

(19) 

If the observation uncertainties and the model are both accurate, the 
zi values are expected to be normally distributed around zero with a 
variance of one, and we can test this prediction in various ways. 

One common approach is to apply Pearson's chi-squared test, by 
computing again the χ2 statistic, here equal to 

∑
z2

i . Under the 
assumption of zi normality, 

∑
z2

i follows a χ2 distribution with Nf =
(
N − Np

)
degrees of freedom, with an expected value equal to Nf . If 

∑
z2

i 
is much greater that Nf , with a corresponding p-value below an arbitrary 
threshold, the observed residuals are said to be over-dispersed relative to 
the assumed uncertainties. Conversely, under-dispersed residuals 
correspond to the case when 

∑
z2

i is much less than Nf . This test is often 
formulated in terms of the reduced χ2 or MSWD, defined as χ2/Nf , whose 
expected value is one. But however useful the reduced χ2 statistic may be 
to characterize under/over-dispersion, what should be done based on 
this evidence depends entirely on the scientific context (cf Vermeesch, 
2018 and Section 4.3 below). 

Pearson's chi-squared test applies equally well to OGLS, which sim-
ply redefines the covariance matrix used to compute χ2 from ry, as to 
other flavors of least-squares regression. Things are not as simple when 
it comes to other tests of normality, including the popular Kolmogorov- 

Fig. 7. Limitations of a first-order linear error propagation. In this synthetic 
example, all of the observations (white circles with 95% error bars) lie on the 
true curve (dashed gray line), except for observation number 3, whose very 
large x uncertainty imply that it does not diverge significantly from the true 
curve. One would thus expect that the best least-squares polynomial fit for these 
data would be very close to the true curve. This is not the case here, because 
OGLS scales the influence of x errors by the local value of ∂f/∂x (cf Section 
2.2.3), so that as the optimization procedure approaches the true solution, the 
influence of these x errors for observation number 3 tends to zero, shifing the 
OGLS best-fit curve (yellow line) away from the truly optimal solution. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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Smirnoff or Shapiro–Wilk tests, which consider the whole N-dimen-
sional vector r*

y but require that its elements are statistically indepen-
dent from each other. In such cases, we can go back to the definition of 
OGLS in terms of a Mahalanobis distance: the best-fiting model being 
that which minimizes r⊤y ⋅V− 1

ry
⋅ry, we can rewrite V− 1

ry
, using Cholesky 

decomposition, as the product of an upper triangular matrix U and its 
transpose: 

V− 1
ry

= U⊤⋅U ⇒ χ2 = r⊤y ⋅V− 1
ry

⋅ry =
(
U⋅ry

)⊤⋅
(
U⋅ry

)
(20) 

This leads naturally to considering the Cholesky residuals U⋅ry, noted 
[ζi] and analogous to the zi values defined above. Conversion between [ri]

and [ζi] is a bijective (i.e. reversible) linear transformation, and the 
linear transformation of a multivariate normal variable is also a multi-
variate normal variable. Thus [ri] is normally distributed if and only if [ζi]

is as well. More specifically, the transformation defined by U corre-
sponds to a N-dimensional rotation and rescaling which, applied to ry (or 
to any other vector whose statistical covariance matrix is Vry ), yields 
transformed residuals with independent distributions of variance equal to 
one [Houseman et al., 2004]. Applying classical tests of normality to [ζi]

thus provides us with a simple way to test the normality of [ri], to assess 
the optimal model's goodness-of-fit, and to quantify the under/over- 
dispersion of our observations. 

3.3. Extension of OGLS to weighted averages 

The ideas described above can be naturally extended to computing 
weighted averages of (x, y) observations, taking into account their full 
covariance structure. In practice, given observations (x, y), one should 
minimize the Mahalanobis length of the corresponding residuals, with 
(x̄, ȳ), defined as the weighted average point, being the parameter vector 
to optimize. Note that the covariance matrix used to define the Maha-

lanobis length to minimize is the covariance of the residuals, which is 
identical to the covariance the observations themselves: 

χ2 =

[
y − ȳ
x − x̄

]⊤

⋅

[
Vy Vyx

V⊤
yx Vx

]− 1

⋅

[
y − ȳ
x − x̄

]

(21) 

Fig. 8 illustrates two non-intuitive situations where taking into ac-
count inter-sample correlations between x and y uncertainties (off-di-
agonal terms in Vyx), with notable effects on the best-fit location (x̄, ȳ) of 
the weighted average (Fig. 8A) and/or on the size and orientation of the 
corresponding confidence ellipse (Fig. 8B). 

A slightly different situation, already described by Vermeesch [2015] 
in the case of a single sample, occurs when considering measurements of 
the same quantity, noted x, in different samples noted a, b, c, …, with 
each sample analyzed an arbitrary number of times. In that case, the 
vector of observations is defined as: 

x =
[

xa1 xa2 … xaNa
xb1 xb2 … xbNb

…
]⊤ (22) 

The OGLS-weighted sample averages, noted x̄ = (x̄a, x̄b,…), is the 
vector which, again, minimizes the χ2 of the residuals for each sample: 

χ2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xa1 − x̄a
xa2 − x̄a

⋮
xb1 − x̄b
xb2 − x̄b

⋮

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⊤

⋅V − 1
x ⋅

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xa1 − x̄a
xa2 − x̄a

⋮
xb1 − x̄b
xb2 − x̄b

⋮

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

with Vx being the

covariance matrix of x (23) 

As before, the optimal vector x̄ may be found using numerical 
methods, usually also yielding an estimate of the covariance matrix of 
the best-fit x̄, thus fully characterizing inter-sample error correlations. 
This approach is useful when computing sample mean values for mea-
surements known to have correlated errors (e.g., as is the case for Δ47 
measurements, see Daëron, 2021 and Section 5 below). 

3.4. Open-source Python implementation (ogls) 

The ogls Python module provides an efficient implementation of 
OGLS regression based on the methods discussed above and released 
under a MIT license. Regression models may be specified in a very 
general way, by providing functional definitions for f and its partial 
derivatives relative to x and [pi]. The module offers a simpler API to work 
with polynomial functions of x with arbitrarily configurable degrees (e. 
g., f(x) = ax5 + bx2

+ c), or with polynomial functions of inverse ab-
solute temperature (e.g., f(T) = a/T2 + b). It also implements the two 
weighted average methods described in Section 2.3. Under the hood, χ2 

minimization uses a Trust Region Reflective algorithm as implemented 
by scipy.optimize.least_squares, but alternative methods may 
be used instead. The module also provides built-in methods to access 
various best-fit statistics such as the covariance matrix of fit parameters, 
the OGLS χ2 value, or the best-fit Cholesky residuals, as well as common 
plotting functions for regression data, error bars, confidence regions, 
and best-fit function. Documentation and development branches of the 
ogls module are currently hosted at https://github.com/mdaeron/ogls. 
The source code for each release is archived on Zenodo (https://doi. 
org/10.5281/zenodo.8357230). 

4. Application to geochronology 

In the following section, the straight line case of OGLS regression — 
which is mathematically equivalent to WTLS regression — is applied to 
the problem of isochron fitting. Isochrons are a cornerstone of high 
precision geochronology. They are used to determine the radiogenic 
isotope ratio in the presence of an inherited (nonradiogenic) component, 
by analyzing multiple aliquots from the same sample. Isochrons come in 

Fig. 8. Two counter-intuitive examples of weighted averages using OGLS. 
White squares represent the two observations, encircled by their respective 95% 
confidence ellipse. Yellow square is the corresponding OGLS-weighted average, 
with associated 95% confidence ellipse shaded in yellow. Inter-sample corre-
lations between x and y errors are listed in upper left corners but not shown 
graphically. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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several forms. See Table 4 for some examples. 
Conventional isochron regression is done using the York et al. [2004] 

algorithm (see Sections 1.3.2 and 2.2.1 above). In fact, York regression 
was developed for this very purpose [York, 1969]. However, the 
following sections will show that York regression is unable to handle the 
complex covariance structures that underly many geochronological data 
sets. 

4.1. Random and systematic uncertainty in geochronology 

Geochronological uncertainties can be divided into two main cate-
gories. Random errors, also known as internal errors, arise from factors 
such as electronic noise in ion detectors and counting statistics. These 
uncertainties can be quantified by investigating the statistical properties 
of replicate measurements in time-resolved mass spectra. Analytical 
precision is assessed using the standard error of these measurements. 
Increasing the number of measurements leads to a decrease in the 
standard error, enhancing precision. 

In contrast, systematic errors, which are also known as external er-
rors, stem from uncertainties linked to assumptions made during the 
calculation of isotopic ratios from the raw mass spectrometer data. 
These encompass effects like the uncertainty of decay constants (λ in 
Table 4), the isotopic composition of reference materials, laboratory 
blanks, calibration factors (J in Table 4) and so forth. Unlike random 
uncertainties, systematic uncertainties cannot be characterized by 
repeated measurements and are not reducible by increasing measure-
ment frequency. 

In many cases, the distinction between random and systematic un-
certainties is clear, and they can be treated separately using a so-called 
“hierarchical error propagation” approach [Renne et al., 1998]. 
Consider the example of 40Ar/39Ar isochron regression, in which all the 
aliquots in the isochron are associated with the same calibration con-
stant J. Then the uncertainty of the isochron age t is obtained in two 
steps. First, a straight line regression is made between the x and y data, 
using the random uncertainties only, and ignoring the systematic un-
certainty associated with J. Second, the uncertainty of the J-factor is 
added to the estimated uncertainty of the slope b in quadrature. This 
then allows the uncertainty of the isochoron age t to be estimated by 
standard error propagation. 

Unfortunately, in some cases the distinction between random and 
systematic uncertainties is not clear, and the hierarchical approach does 
not work. Revisiting the 40Ar/39Ar example, consider a hypothetical 
dataset combining aliquots from two neutron irradiations, correspond-
ing to two J-factors. The hierarchical error propagation approach is 
unable to deal with this situation, which requires the full covariance 
matrix of uncertainties to be taken into account. Such “hybrid un-
certainties” are pervasive throughout geochronology. Examples include:  

1. Blank correction of 40Ar/39Ar or 207Pb/206Pb data, in which multiple 
aliquots share the same blank measurements [Vermeesch, 2015; 
Connelly et al., 2021].  

2. Sample-standard bracketing in U-Pb geochronology by laser ablation 
inductively coupled plasma mass spectrometry, in which spline 
interpolation of laboratory drift creates complex inter-sample error 
correlations [McLean et al., 2011].  

3. Construction of a Pb/U vs UO/U calibration curve in U-Pb 
geochronology by secondary ion mass spectrometry, whereby the 
Pb/U-ratio uncertainties of a sample's aliquots vary depending on 
their UO/U-ratios relative to those of the calibration data [Ver-
meesch, 2022]. 

Geochronologists have only recently started capturing these inter- 
sample error correlations. However, the statistical tools to analyse 
them have not yet been developed. The application of OGLS to isochron 
regression is an important first step in this direction. 

4.2. An 40Ar/39Ar example 

Let us consider the inverse isochron ratios of the 40Ar/39Ar system 
[Vermeesch, 2015]: 
[

36
40

]

=
A − B − C + D − E

1 − F + G
and

[
39
40

]

=
H − I

1 − F + G
(24)  

where ‘36’, ‘39’ and ‘40’ stand for 36Ar, 39Ar and 40Ar, respectively, 
whilst 

A =

[
36
40

]

m
,B =

[
37
40

]

m

[
36
37

]

ca
,C =

[
38
40

]

m

[
36
38

]

cl
,D =

[
39
40

]

m

[
38
39

]

k

[
36
38

]

cl
,

E =

[
37
40

]

m

[
39
37

]

ca

[
38
39

]

k

[
36
38

]

cl
,F =

[
39
40

]

m

[
40
39

]

k
,

G =

[
37
40

]

m

[
39
37

]

ca

[
40
39

]

k
,H =

[
39
40

]

m
and I =

[
37
40

]

m

[
39
37

]

ca
;

in which m stands for the ‘measured ratio’ of the sample, ca and k for the 
isotopic composition of co-irradiated Ca- and K-salts (to quantify the 
interferences on 36Ar, 39Ar and 40Ar), and cl stands for the reactor- 
specific interferences from Cl (on 36Ar and 38Ar). The complexity of 
Eq. (24) introduces hybrid uncertainties that cannot be separated into 
random and sytematic components. 

Fig. 9 shows an example of such a complex 40Ar/39Ar-dataset, using 
12 sets of argon measurements on Quaternary sanidine, acquired by a 
Nu Instruments Noblesse mass spectrometer at the University of Wis-
consin (courtesy of Dr. Allen Schaen). Using OGLS instead of York 
regression changes the slope and intercept by 1% and 0.7%, respec-
tively, whilst improving their precision by a third. The accuracy and 
precision of the corresponding isochron age changes accordingly, from 
1.030 ± 0.14 to 1.033 ± 0.10 Ma. 

4.3. Dealing with overdispersion 

The degree to which the analytical uncertainties account for the 
observed dispersion of the isotopic ratio measurements around the best 

Table 4 
Examples of two-dimensional isochron fits, using the generic formula y = a+ bx. J is a calibration constant, λ* is the decay constant of the parent nuclide, i.e., 40K, 235U 
or 238U. (Z)i is the inherited component of Z, and t is geologic time.  

isochron type x y a b 

conventional 40Ar/39Ar 39Ar
36Ar 

40Ar
36Ar 

(40Ar
36Ar

)

i 

J(exp[λ40t] − 1 )

inverse 40Ar/39Ar 39Ar
40Ar 

36Ar
40Ar 

(36Ar
40Ar

)

i 
J(1 − exp[λ40t] )

(36Ar
40Ar

)

i 
conventional 207Pb/206Pb 206Pb

204Pb 

207Pb
204Pb 

(207Pb
204Pb

)

i 

(235U
238U

)
exp[λ235t] − 1
exp[λ238t] − 1 

inverse 207Pb/206Pb 204Pb
206Pb  

207Pb
206Pb  

(235U
238U

)
exp[λ235t] − 1
exp[λ238t] − 1  

(207Pb
206Pb

)

i   

M. Daëron and P. Vermeesch                                                                                                                                                                                                                



Chemical Geology 647 (2024) 121881

11

fit line can be quantified with the χ2 statistic, and formally assessed with 
a chi-square test. If the p-value of this test is less than some predefined 
significance cutoff (typically α = 0.05) or, equivalently, if the MSWD is 
greater than 1+ 2

̅̅̅̅̅̅̅̅̅̅̅
2/Nf

√
, then the data are said to be ‘overdispersed’ 

with respect to the analytical uncertainties, meaning that the goodness- 
of-fit is poor and that the parameteric assumptions of the OGLS are no 
longer valid. 

One way to deal with overdispersed datasets is to inflate the 
analytical uncertainties by a factor of 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
MSWD

√
. This removes the sta-

tistical problem but does not address the root cause of the over-
dispersion. A scientifically more useful solution is to attribute the excess 
dispersion to one of the fit parameters. Thus, in the case of isochron 
regression, the overdispersion can be attributed to excess scatter of the 
intercept (a) or slope (b). This excess scatter has scientific meaning. 
Overdispersion of the intercept can be attributed to heterogeneity of the 
inherited component. Overdispersion of the slope, on the other hand, 
can be attributed to diachronous isotopic closure [Rioux et al., 2012]. 

Overdispersion can be formally quantified using the the method of 
maximum likelihood instead of the (equivalent) least squares approach. 
To estimate the overdispersion of the intercept (as a standard deviation 
σa), maximize the goodness-of-fit parameter La, where: 

− 2⋅La = ln

⃒
⃒
⃒
⃒
⃒

Vy Vyx

V⊤
yx Vx + INσ2

a

⃒
⃒
⃒
⃒
⃒
+

[
rx
ry

]T[ Vy Vyx

V⊤
yx Vx + INσ2

a

]− 1[
rx
ry

]

(25)  

where IN is the N × N identity matrix. Eq. (25) can be efficiently maxi-
mized using an iterative two step process:  

1. For any given value of σa, find the optimal values of a and b by 
applying ordinary OGLS regression to the second term of (25), 
ignoring the first term. Then plug these optimal values of a and b into 
(25) to calculate the corresponding log-likelihood.  

2. Explore the parameter space of σa until the log-likelihood is 
maximized. 

The overdispersion of the slope (σb) can be estimated by maximizing 
an alternative log-likelihood function, Lb, where: 

− 2⋅Lb = ln

⃒
⃒
⃒
⃒
⃒

Vy Vyx

V⊤
yx Vx + [diag(ξ)σb ]

2

⃒
⃒
⃒
⃒
⃒

+

[
rx
ry

]T[ Vy

VΤ
yx Vx + [diag(ξ)σb ]

2

]− 1[
rx
ry

]

(26)  

in which diag(ξ) is a diagonal matrix with the true (but unknown) values 
of the independent variable (where ξ = [ξi], see Section 2.3.3). Eq. (26) 

has N + 3 unknowns (a, b, σb and the elements of ξ). Unfortunately, 
unlike the σa estimation, it is not possible to divide the parameter esti-
mation into two clean steps, so computationally more intensive nu-
merical methods are required. 

4.4. Implementation in IsoplotR 

IsoplotR is an R package for radiometric geochronology [Ver-
meesch, 2018]. It includes functions for 40Ar/39Ar, U-Pb and many other 
chronometers, as well as generic datasets. WTLS/OGLS was added as a 
bivariate linear regression option in version 5.4 of the package, which is 
available online from the Comprehensive R Archive Network (CRAN, R 
Core Team, 2013) at https://cran.r-project.org/package=IsoplotR. The 
easiest way to get started with IsoplotR is through the graphical user 
interface (GUI), which is available online at several mirror sites (e.g., 
https://isoplotr.es.ucl.ac.uk). 

The online GUI consists of various pull-down menus. The OGLS 
functionality can be accessed by selecting other and regression from 
the first two of these menus, and selecting the third input format in the 
Options menu. This format consists of a matrix with 2N rows and 2N + 1 
columns, in which the first column contains the X-values on top of the Y- 
values, and the subsequent 2N columns contain the full covariance matrix 
of those X and Y-values. Clicking the PLOT button at the bottom of the 
GUI triggers the OGLS regression. In the presence of excess dispersion, the 
overdispersion parameter σa can be estimated by selecting ‘Model-3’ 
regression in the Options menu. Ordinary OGLS regression corresponds to 
‘Model-1’, whereas ‘Model-2’ regression corresponds to orthogonal least 
squares regression, which ignores the analytical uncertainties. 

The following code snippet provides a self-contained example of 
OGLS regression from the command-line, using the 40Ar/39Ar example 
of Section 4.2. The file path to this dataset, which is included with 
IsoplotR, can be retrieved by R's system.file() function: 

library(IsoplotR) 

fn <- system.file("UW137.csv",package="IsoplotR") 

dat <- read.data(fn,method="other",format=6) 

fit <- ogls(dat) # numerical calculations 

isochron(dat) # graphical results 

To estimate the overdispersion parameter σa: 

fit <- ogls(dat,random.effects=TRUE) 

isochron(dat,model=3) 

Generating large covariance matrices such as the one stored in 
UW137.csv requires a new generation of upstream data processing 

intercept

sl
op

e

0.0

0.2

0.4

0.6

0.8

1.0

X1 X12 Y1 Y12

X1

X12
Y1

Y12

0.40 0.45 0.50 0.55

0.
00

02
0.
00

06
0.
00

10
0.
00

14

0.0026 0.0028 0.0030 0.0032 0.0034

−0
.0
05

0
−0

.0
04

5
−0

.0
04

0
− 0

.0
03

5

36Ar
40Ar

39Ar
40Ar

Y=

X=

a) b) c)

Fig. 9. a) Correlation matrix of 12 pairs of inverse 40Ar/39Ar isochron ratios; b) inverse isochron regression using the York algorithm (dashed red) and OGLS al-
gorithms (solid blue); c) 95% confidence ellipses of the best-fit parameters. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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software such as Ar-Ar_Redux [Vermeesch, 2015] and simplex 
[Vermeesch, 2022]. 

5. Application to Δ47 calibrations 

In this section, OGLS regression is used to investigate whether 
different calibrations of carbonate “clumped isotopes” (Δ47) paleo-
thermometry agree with each other within analytical uncertainties. For 
context, Δ47 is a quantity used by stable isotope geochemists to char-
acterize the statistical excess of 16O13C18O isotopologues in CO2 [Eiler 
and Schauble, 2004; Eiler, 2007]. Because 13C − 18O bonds in carbonate 
minerals are thermodynamically favored at low crystallization temper-
atures, precise measurements of Δ47 may be used to constrain the for-
mation conditions of well-preserved carbonates up to hundreds of 
million years old [Schauble et al., 2006; Ghosh et al., 2006; Eiler, 2011]. 

Although certain types of carbonates, such as stalagmites or corals, 
are known to present large departures from equilibrium Δ47 values [e.g., 
Daëron et al., 2011; Saenger et al., 2012], several research groups over 
the years have independently observed that many other carbonates, 
both biogenic and abiotic, appear to follow the same relationship be-
tween Δ47 and formation temperature despite being formed under very 
diverse chemical conditions. Early calibration studies aiming to 
constrain this equilibrium relationship, however, yielded large dis-
crepancies between research groups, with differences up to ±10 ◦C at 
ambient temperatures [cf Fig. 4 of Spencer and Kim, 2015]. Since then, 
improved data processing methods have greatly reduced these inter- 
laboratory discrepancies but not entirely eliminated them [Petersen 
et al., 2019]. More recently, the clumped-isotope community collec-
tively defined a new metrological scale anchored to carbonate reference 
materials, the InterCarb Carbon Dioxide Equilibrium Scale (I-CDES), which 
solves long-standing inter-laboratory standardization issues [Bernasconi 
et al., 2021]. Published shortly afterwards, two independent calibration 
studies based on re-analyzed and newly-analyzed carbonates of various 
types appear to yield consistent I-CDES Δ47 values as a function of 
temperature [Anderson et al., 2021; Fiebig et al., 2021]. 

The issue we aim to address here is whether reprocessing previously 
published Δ47 calibration studies in the I-CDES reference scale yields 
statistically consistent calibration relationships, or, in other words, 
whether the degree of scatter observed in a large Δ47 data set is 
commensurate (neither smaller nor greater) than predicted based on the 
analytical and environmental uncertainties. This problem plays to the 
strengths of OGLS regression, because calibration studies must take into 
account analytical uncertainties in Δ47 measurements as well as un-
certainties on independently constrained crystallization temperatures, 
both of which may be rather large and potentially correlated across 
observations. 

5.1. Covariance in Δ47 measurements and temperature estimates 

Compared to many other stable isotope tracers, carbonate clumped 
isotopes stand out in that analytical uncertainties remain large relative 
to the range of Δ47 values typical of natural samples. What's more, a 
sizable component of measurement error arises from standardization 
corrections designed to compensate for various sources of analytical 
nonlinearity, and the resulting errors are shared by samples analyzed 
together. As a result, Δ47 measurements from a single study are not 
statistically independent but correlated (most often positively, cf. 
Fig. 10), to an extent that depends on the temporal distribution of an-
alyses, on the ratio of standards to unknown samples and on their 
relative compositions [Daëron, 2021]. Computing the full covariance 
matrix for a set of Δ47 measurements requires access to the “raw” (un-
corrected) analytical data, using for instance the D47crunch library for 
Python. 

Regarding temperature estimates, two different kinds of covariance 
are to be considered. For one thing, several calibration samples 
considered below (natural inorganic calcites from Devils Hole and 
Laghetto Basso, and eight samples purposefully re-equilibrated at high 
temperatures) were analyzed independently by different groups [Jautzy 
et al., 2020; Anderson et al., 2021; Fiebig et al., 2021]. Although their 
Δ47 values measured in different studies are statisticaly independent, 
neither their true formation/equilibration temperatures nor their 
assigned temperature estimates vary between studies. Because of this, 
the errors in the assigned formation temperature for a given sample 
analyzed by different groups are all equal, with correlation coefficients 
equal to one. 

Another case to consider is that of planktic foraminifera recovered 
from sedimentary core tops [e.g., Peral et al., 2018; Meinicke et al., 
2020], whose calcification temperatures were estimated from oxygen- 
18 thermometry using seawater δ18O values from a global gridded 
data set. Because samples collected from the same core top presumably 
experienced similar water compositions, the error contribution from 
seawater δ18O is shared by all samples from that core top, resulting in 
strongly positive correlation coefficients (Fig. 10). 

5.2. Compilation and reprocessing of published calibration data 

In the first calibration study processed in the I-CDES framework, 
Anderson et al. [2021] compared their own results with those of pre-
vious studies, independently reprocessed to the I-CDES scale, and 
concluded that the corresponding regression lines were in close agree-
ment. Shortly thereafter, Fiebig et al. [2021] reported new measure-
ments of inorganic calcites presumed to have achieved clumped-isotope 
equilibrium, with state-of-the-art analytical precision and covering a 

Fig. 10. Example of error correlations in Δ47 calibration data. Left panel: Example of error correlations between Δ47 measurements. Gray squares correspond to ρ =

1. Raw data from Jautzy et al. [2020], reprocessing details in Appendix A. Right panel: Example of error correlations between temperature estimates. Correlation in 
the uncertainties for calcification temperatures of foraminifera from various core-tops, derived from δ18O thermometry. Samples from the same core top likely 
experienced similar seawater compositions, so that the error contribution from seawater δ18O is common to all samples from that core top. Raw data from Peral et al. 
[2018], reprocessing details in Appendix A. Gray squares correspond to ρ = 1. 
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wide range of temperatures (8–1100 ◦C). Among other findings, they 
also concluded that their equilibrium Δ47 calibration was in good 
agreement with Anderson et al. [2021] and some of the older reproc-
essed studies. These results bode well for the hypothesis that the I-CDES 
scale may fully reconcile the calibration data from different groups, and 
OGLS offers an opportunity to test this hypothesis quantitatively, based 
on a large reprocessed data set and accounting for error covariance in 
Δ47 and in temperature. 

Calibration data to include here were selected based on the following 
criteria. First and foremost, proper reprocessing requires access to the 
original analytical data, and the I-CDES conversion also requires that 
these studies include measurements of several carbonate standards 
whose I-CDES values are well known, as opposed to relying on equili-
brated CO2 standards. Furthermore, estimating Δ47 covariance is done 
here using a “pooled regression” approach as implemented by the 
D47crunch library [Daëron, 2021], using the I-CDES nominal values 
assigned to the ETH-1/2/3/4 standards, from Figs. 2 and 4 of Bernasconi 
et al. [2021] for ETH-1/2/3 and ETH-4, respectively. In a few studies 
initially considered, Δ47 measurements were standardized based on 
reference materials analyzed in a moving time window rather than 
grouping analyses in discrete analytical sessions [e.g., Meinicke et al., 
2020]. Although this approach is entirely valid in itself, the statistical 
treatment implemented in D47crunch does not properly apply in the 
case of a moving window, and to the best of our knowledge there is no 
published method to reliably propagate full standardization un-
certainties for that approach. Moving-window studies were thus 
excluded, except for that of Jautzy et al. [2020], which provides crucial 
high-temperature constraints and whose results are not particularly 
sensitive to the use of discrete versus moving-window sessions. 

In the end, the reprocessed data sets meeting all of the above criteria 

are those of Breitenbach et al. [2018], Peral et al. [2018], Jautzy et al. 
[2020], Anderson et al. [2021], Fiebig et al. [2021], and Huyghe et al. 
[2022]. The combined data set is summarized in Table 5 and comprises 
104 sample measurements based on ∼ 2000 unknown and ∼ 3000 
standard analyses performed by five different research groups, with 
formation temperatures ranging from − 2 ◦C to 1100 ◦C, including syn-
thetic carbonates, experimentally heated samples, very slow-growing 
natural calcites, travertines, tufa, cave pearls, foraminifera, marine bi-
valves, glacial lake carbonates, and (proto-)dolomite precipitates. 
Reprocessing details for each data set are provided in appendix, and the 
complete reprocessing code and data are included in the source code of 
the D47calib library (Section 5.4). 

5.3. Reconciled calibrations of carbonate Δ47 

5.3.1. Choice of model function and best-fit model for the combined data 
set 

The combined data set ([OGLS23] in Table 5) was subjected to OGLS 
regression, modeling Δ47 as second-degree polynomial of inverse abso-
lute temperature: 

Δ47 = a0 + a1
/

T + a2
/

T2 (27) 

Alternative polynomial functions have been used, historically, with 
the most frequent choice being an equation of the form a0 + a2/T2. 
Another popular option is to use a polynomial of degree greater than 
two, introducing additional terms such as a3/T3 and a4/T4. After 
comparing the outcomes of different models, we conclude that Eq. (27) 
qualifies as the best polynomial model function based on the Bayes and 
Akaike information criteria, two different benchmarks often used for 

Table 5 
Δ47 calibration data sets reprocessed and combined in this study.  

Label Original publication Laboratory Sample Type N T (◦C) 

[B18] Breitenbach et al. [2018] Univ. Cambridge Cave pearls 6 3–47 

[P18] Peral et al. [2018] LSCE Planktic foraminifera 25 3–23 

[J20] Jautzy et al. [2020] Geol. Surv. Canada Synthetic 11 5–250    
Heated 1 727    

Synthetic 17 6–80    
Tufa, Travertines 12 5–95 

[A21⋅MIT] Anderson et al. [2021] MIT Lacustrine 6 0–4    
(Proto-)dolomite 4 80–350    
Heated 2 1100 

[A21⋅LSCE] Anderson et al. [2021] LSCE Slow-growing calcite 2 8–34    

Synthetic 5 120–250 
[F21] Fiebig et al. [2021] Goethe-Univ. Slow-growing calcite 3 8–34    

Heated 3 727–1100 

[H22] Huyghe et al. [2022] LSCE Marine bivalves 7 − 2–27 

[OGLS23] this study all of the above all of the above 104 − 2–1100  

Table 6 
Δ47 model selection: The performances of various polynomial model functions of inverse absolute temperature were compared by applying OGLS regression to the 
combined data set [OGLS23] before computing the root mean squared weighted deviation (RMSWD), the Bayes information criterion (BIC) and the Akaike infor-
mation criterion (AIC) for each model. Both the BIC and the AIC can be used as a benchmark of model performance by considering the trade-off between goodness-of-fit 
and model simplicity, with lower BIC or AIC values implying better models [Stoica and Selen, 2004]. The results confirm that a model with degrees (0,2) performs 
much better than with degrees (0,1), which is hardly unexpected. Adding a first-degree (a1) or a third-degree (a3) term further decreases BIC and AIC and slightly 
decreases RMSWD. Based on both information criteria, the best model is that with degrees (0,1, 2).  

Degrees Model RMSWD BIC AIC 

(0, 1) Δ47 = a0 + a1/T 3.41 262.7 257.4 
(0, 2) Δ47 = a0 + a2/T2 0.96 − 0.5 − 5.8 
(0, 1,2) Δ47 = a0 + a1/T+ a2/T2 0.93 − 3.7 − 11.6 
(0, 2,3) Δ47 = a0 + a2/T2 + a3/T3 0.94 − 1.6 − 9.5 
(0, 1,2, 3) Δ47 = a0 + a1/T+ a2/T2 + a3/T3 0.93 − 0.5 − 11.1  
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model selection (Table 6). 
The second-degree model function yielding the optimal fit for the 

combined data set is: 

Δ47 = 0.1744 −
18.14

T
+

42.66 × 103

T2 (OGLS23 calibration) (28) 

In practice, to compute T from Δ47, one may invert (28) algebraically 
(appendix B), but it is also possible to do so numerically, for example 
using the D47calib library Section 5.4 which also propagates cali-
bration and/or measurement uncertainties into the final temperature 
estimate. The combined calibration is shown in Fig. 11 along with all 
measurements constraining it, and its standard model errors and confi-
dence limits are reported in appendix B. 

5.3.2. Overall goodness of fit and statistical consistency between individual 
data sets 

As a first test, we may check how well the combined regression 
function agrees with the confidence regions for each of the independent 
data sets. Eq. (28) remains well within the intersection of the 95% 
confidence limits for all individual studies, from 0 ◦C to 1200 ◦C (cf fig- 
S1.pdf in code repository). We may also assess how well the individual 
regressions agree at low temperature, by plotting the corresponding 

joint confidence ellipses for the Δ47 value predicted at 25 ◦C and the 
local calibration slope. As shown in Fig. 12, all of these 95% confidence 
ellipses overlap. 

Considering now the regression residuals, the combined calibration 
has a RMSWD of 0.93. This value lies within the 95% confidence interval 
(0.86–1.14) for the RMSWD of a χ2 distribution with 101 degrees of 
freedom, suggesting that the uncertainties assigned to our observations 
are not grossly inaccurate. As described in Section 3.2.5, we may also 
call upon a Kolmogorov-Smirnoff test to determine whether the Cho-
lesky residuals of our best-fit model are unlikely to be drawn indepen-
dently from a normal distribution with a variance of one. The resulting 
p-value of 0.39 (Fig. 11) implies that there is no compelling evidence 
that the distribution of our fit residuals differs significantly from that 
expected from the covariance of our observations, further strengthening 
the case that Eq. (28) provides a good fit to the combined data set. 

Leaving aside this overall goodness of fit, however, we may still ask 
whether each of the individual data sets is in good statistical agreement 
with the combined calibration. To do so, we start by computing, for each 
of the partial data sets listed in Table 5, the Δ47 residuals relative to Eq. 
(28). We then convert these Δ47 residuals to Cholesky residuals based on 
the covariance matrix of the observations for that data set, and check, 
using a Kolmogorov-Smirnoff test of normality, whether their observed 
distributions are likely to deviate from the expected (normal) distribu-
tion. As shown in Fig. 13, none of the data sets considered here have 
Cholesky residuals deviating significantly from a zero-centered normal 
distribution with unit variance, implying that each study's results are 
neither biased nor under/over-scattered compared to the dispersion 
predicted from their respective environmental and analytical 
uncertainties. 

Fig. 11. Combined Δ47 calibration plot. A second-degree polynomial regression 
yields a good fit to the [OGLS23] data set combining all data from the prior 
studies listed in Table 5, with Cholesky residuals statistically indistinguishable 
from the expected Gaussian distribution (Section 5.3.2). 

Fig. 12. Comparison of the Δ47 value and sensitivity to T at 25 ◦C for the 
different calibrations. For historical reasons, the regression slope shown here is 
defined as the local derivative of Δ47 with respect to 1/T2. All ellipses represent 
95% confidence regions. See Appendix A for reprocessing details. 

M. Daëron and P. Vermeesch                                                                                                                                                                                                                



Chemical Geology 647 (2024) 121881

15

5.3.3. Comparison with theoretical models 
The combined Δ47 calibration may also be compared with theoretical 

predictions of the Δ63 clumped-isotope anomaly in calcite [Hill et al., 
2014] and of isotopic fractionations associated with the conversion of 
CaCO3 to CO2 by phosphoric acid reaction [Guo et al., 2009]. As shown 
in Fig. 14, the observed Δ47 values increase linearly with Δ63 predictions 
based on the known formation/equilibration temperatures, with a slope 
slightly greater than one (1.043 ± 0.011, 95% confidence). This slope is 
consistent with the original prediction of Guo et al. [2009] that the net 
effect (Δ*

47) of the acid reaction should increase as a function of (equi-
librium) Δ63 with a sensitivity of 0.035. Based on the high-temperature 
calcites in the combined data set, Δ*

47 for an acid reaction at 90 ◦C (since 
the I-CDES scale is by convention defined as Δ47 values corresponding to 
a 90 ◦C reaction) is on the order of 0.184 ± 0.004 ‰ (95% confidence). 
Because the high-temperature Δ47 constraints in the combined data set 
are primarily from measurements performed by Fiebig et al. [2021], this 
value is virtually identical to theirs. 

5.3.4. Implications 
The statistical consistency among I-CDES calibration studies and 

their agreement with theoretical predictions support a conceptually 
simple worldview where: 

(a) the calibration materials compiled here share a common rela-
tionship linking their Δ47 value to their crystallization or equili-
bration temperature, most likely reflecting thermodynamic 
equilibrium between carbonate isotopologues;  

(b) this equilibrium relationship is closely approximated by Eq. (28), 
with a precision better than ±1 ◦C (95% CL) for temperatures 
below 50 ◦C (Fig. 15);  

(c) Δ47 measurements performed in different laboratories, when (re) 
processed in the I-CDES metrological scale, are directly compa-
rable with each other, without introducing additional un-
certainties beyond those explicitly accounted for using current 
analytical error models. This point was previously established by 
Bernasconi et al. [2021] based on the InterCarb results. The 
findings reported here further strengthen their conclusions, based 
on an equally large (N ≈ 5000) yet completely independent data 
set.  

(d) I-CDES calibration observations are quantitatively consistent 
with the combined theoretical models of Hill et al. [2014], who 

Fig. 13. Kolmogorov-Smirnoff tests of normality for the Cholesky residuals of each individual calibration relative to the combined regression [OGLS23]. Left-hand 
plots show the data points, with 95% error bars, for each data set, along with the combined regression line. Right-hand plots show the cumulative distribution of 
Cholesky residuals, with the number of observations and p-value for a Kolmogorov-Smirnoff test of normality with mean of zero and variance of one. All data sets 
have a distribution of Cholesky residuals which is statistically indistinguishable from the expected Gaussian distribution (Section 5.3.2). See Appendix A for 
reprocessing details. 
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predicted how Δ63 should vary with temperature in carbonate 
minerals, and of Guo et al. [2009], who predicted how Δ*

47 should 
increase with (equilibrium) Δ63. 

These claims are not new, having been scrutinized for well over a 
decade. Yet it is worth pointing out that each of the statements above is 
now unambiguously backed up by strong evidence, thanks to the 
persistent, concerted efforts of the clumped-isotope community. This is a 
milestone for Δ47 thermometry, not because the framework summarized 
above is perfect and universally applicable, but because we are now 
much better-equipped to investigate where and how the statements 

above cease to apply or require qualification. 
For one thing, we are in fact well aware that not all carbonates follow 

an equilibrium Δ47 calibration. Being able to precisely compare Δ47 (I- 

CDES) measurements from any laboratory to the equilibrium calibration 
reported here — or to future, better versions of it — improves our ability 
to quantify Δ47 disequilibrium in natural and synthetic carbonates. This, 
along with the progress of Δ48 metrology, will in turn greatly improve 
our ability to determine which carbonates have equilibrium clumped- 
isotope signatures and which do not, but also to study quantitatively 
how Δ47 disequilibria vary with other parameters beyond temperature, 
and how they co-vary with other isotopic and elemental tracers, with 
obvious applications to the study of inorganic and biologic processes 
[Guo, 2020; Uchikawa et al., 2021; Watkins and Devriendt, 2022]. This 
prediction should be tempered by a reminder that independent Δ47(I- 

CDES) measurements are expected to be consistent within analytical un-
certainties. Meaningful inter-laboratory comparisons still depend criti-
cally on the accuracy of our analytical error estimates, which should, as 
pointed out in previous studies, account for the (correlated) errors 
introduced by correction/standardization procedures [Kocken et al., 
2019; Daëron, 2021; Bernasconi et al., 2021]. 

Furthermore, the combined data set considered here is almost 
exclusively based on calcite samples. According to the theoretical 
models of Hill et al. [2014], different carbonate mineralogies should 
have slightly different equilibrium Δ47 values at a given temperature. 
These differences remain small, on the order of 10 ppm, at ambient 
temperatures, but should be detectable based on current instrumental 
limits and the newly improved constraints on equilibrium values of 
calcite Δ47 (I-CDES). An additional concern is that phosphoric acid re-
actions at different temperatures may fractionate different mineralogies 
in different ways, yielding different results Δ47 (I-CDES) when aragonite or 
dolomite samples are standardized using the calcite reference materials 
underpinning the I-CDES scale. It is likely that this will ultimately 
require defining new reference materials with mineralogies other than 
calcite [Anderson et al., 2023]. 

Finally, we now have very tight contraints, consistent across reseach 
groups, on Δ47(I-CDES) values for slow-growing inorganic calcites from 
Devils Hole (∼ 34 ◦C) and Laghetto Basso (∼ 8 ◦C) on one hand [Daëron 
et al., 2019; Anderson et al., 2021; Fiebig et al., 2021], and for biogenic 
or abiotic calcites charactarized by strikingly different mineralization 

Fig. 14. Comparison between Δ47 measurements and theoretical calcite Δ63 
values for the whole [OGLS23] data set. Theoretical Δ63 is from Hill et al. 
[2014]. The observed slope is statistically consistent with that predicted based 
on the acid fractionation model of Guo et al. [2009] (cf Section 5.3.3). 

Fig. 15. Regression confidence limits on the [OGLS23] calibration. Left panels: confidence limits on Δ47 and T estimates as a function of T (x axis is scaled as 1/T2). 
Right panels: Quasi-Monte Carlo simulations of Δ47 uncertainties at three different values of T, confirming the applicability of our first-order propagation methods. 
See Appendix B.2 for computation details. 
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conditions [e.g., Daëron and Gray, 2023, and references therein for 
planktic foraminifera]. The fact that these different types of calcite have 
virtually identical Δ47 signatures, despite clear differences in their 
apparent fractionation oxygen-18 factors relative to their parent waters, 
and despite the fact that their mineralization conditions differ in many 
important ways (pH, Mg/Ca, mineralogies, overall cristallization rates, 
chemical flux rates, activities of organic and inorganic catalysts…), is an 
observation which should tell us something fundamental about how 
exactly a carbonate mineral inherits its clumped-isotope composition 
from those of the DIC species it precipitated from. It may be useful here 
to consider two end-member “toy models”. According to the first one, 
the net effect of all fractionations, due to chemistry and/or transport, 
between the mineral phase and the DIC species preserves clumping to 
the first order, either because of quantitative precipitation of a DIC pool 
[e.g., Tripati et al., 2015], or because fractionation factors are inherently 
“stochastic-like” [cf Watkins and Hunt, 2015]. In this case, the fact that 
planktic foraminiferal tests, for instance, have equilibrium Δ47 values 
whereas coral carbonate does not may be used to constrain DIC com-
positions in the calcification micro-environment. According to another 
end-member model, heterogenous oxygen-18 equilibrium (between 
water and DIC as well as between DIC and the precipitating mineral) 
may be mechanistically decorrelated to some extent from single-phase 
clumped-isotope equilibrium, for example through rapid breaking and 
reforming of C-O bonds at the crystal growth surface, and/or during the 
transition from amorphous to crystalline phases. This might explain why 
some rapidly forming biocarbonates, whose DIC-water equilibration 
reactions should be slow due to high presumed calcification pH, may 
still display equilibrium Δ47 signatures. Both of these models are naive 
and obviously lack a proper mechanistic grounding, but are meant to 
encourage future process/model studies to take advantage of our 
newfound ability to pinpoint equilibrium Δ47(I-CDES) values with 
unprecendented precision. 

5.4. Open-source Python implementation (D47calib) 

The D47calib Python module provides a general framework for 
processing Δ47 calibration data sets using OGLS regression, e.g., defining 
new calibrations from (T,Δ47) data; combining two or more data sets 
with or without samples in common; simple plotting of observations and 
best-fit regression line along with the corresponding confidence limits as 
a function of (inverse) temperature. D47calib also offers a simple 
function T47() to compute T values from Δ47 measurements and vice 
versa, along with fully propagated standard errors (optionally including 
calibration uncertainties, measurement uncertainties, or both), also 
potentially computing the the full covariance matrix of T estimates 
based on the covariance matrix of a Δ47 vector, with or without ac-
counting for calibration uncertainties. All of the calibration data sets of 
Table 5 are already defined in the module, so that applying Eqs. (28) and 
(38) only requires a call to D47calib.OGLS23.T47(). Documentation 
and development branches of the D47calib module are currently hosted 
at https://github.com/mdaeron/D47calib, and the source code for each 
release is and will be archived on Zenodo (https://doi.org/10. 
5281/zenodo.8357232). 

6. Conclusions 

Based on the overview of existing least-squares methods, each with 
their own strengths and simplifications, it should be evident that 

Omnivariant Generalized Least Squares can be viewed as a missing link 
between Weighted Total Least Squares, whose high dimensionality of 
model parameter space makes for challenging computational problems 
when dealing with hundreds of observations or more, and the comple-
mentary approaches of Generalized Least Squares, which accounts for 
general covariance in y and ignores errors in x, and effective variance 
methods including York's straight line regression, which treat (x, y)
observations as statistically independent from each other. Our aim here 
has been to describe the background, core principle, and the practical 
uses of OGLS in a widely accessible manner, so that researchers in 
diverse fields may readily apply and/or extend this approach. 

As stated in introduction, regression analysis stems from purpose. 
For the purpose of geochronology, new software is needed to take full 
advantage of the improved precision and accuracy offered by the OGLS 
method. Currently, most low-level software that is used to process 
geochronological data ignores inter-sample error correlations. Only a 
handful of new and little-used packages capture these rich covariance 
structures [e.g., Vermeesch, 2015; McLean et al., 2016; Vermeesch, 
2022]. Those tools need to become more widespread and linked together 
with higher order software such as IsoplotR [Vermeesch, 2018] in 
order to create an internally consistent ecosystem of geochronological 
software with OGLS regression at its heart. 

In the context of clumped isotope geochemistry, it is now clear that 
the definition of the I-CDES metrological scale, having virtually elimi-
nated inter-laboratory discrepancies [Bernasconi et al., 2021], also 
solves our long-standing (calcite) Δ47 calibration problem. Future 
studies will doubtlessly refine, qualify, extend, and perhaps challenge 
this finding. However, we now have constraints on equilibrium Δ47 
values which are accurate and precise enough for the vast majority of 
known applications, including virtually all paleo-environmental 
reconstructions. 
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Appendix A. Reprocessing Δ47 calibrations in the I-CDES reference frame 

Note: The complete reprocessing code and data described below are included in the source code of the D47calib library, and the corresponding 
calibration plots are shown in Fig. 16. Data sets including samples equilibrated at T > 700 ◦C were fit as quadratic functions of the form a/T2 + b/T+ c, 
while those whose formation temperatures did not exceed 50 ◦C were fit as a/T2 + c. 
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Fig. 16. Regression plots for the individual calibration data sets. Error bars are 95% confidence limits. Yellow shaded regions are 95% confidence bands of the best- 
fit functions. See Appendix A for reprocessing details. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)  

[B18] Cave pearls [Breitenbach et al., 2018] 

Raw data were obtained from the original study's supplementary information. The original publication processed data according to two sessions, 
each 4–5 months long, separated by 2 months. After reprocessing the original raw data using D47crunch, visual inspection of the standardization 
residuals defined revealed the presence of substantial drifts in both sessions. We thus assigned modified session boundaries defining four continuous 
measurement periods separated by 21 to 52 days, with new session lengths ranging from 24 to 80 days. The original data was not modified in any other 
way. Formation temperatures are from Table 1 of the original study. We assigned arbitrary 95% uncertainties of ±1◦C, which seem reasonable for cave 
environments. Combining these temperature constraints with the D47crunch-reprocessed Δ47 values yields the following OGLS best-fit regression: 

Δ47 = 41.81× 103/T2 + 0.123 (D47calib.breitenbach 2018) (29) 
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[P18] Planktic foraminifera [Peral et al., 2018] 

Peral et al. [2018] reported Δ47 values of foraminifera from core-tops, both planktic and benthic, whose calcification temperature estimates were 
recently reassessed by Daëron and Gray [2023]. Here we only consider Peral et al.'s planktic data, excluding two benthic samples (cf Daëron & Gray for 
reasons why we only consider planktic samples for now). In our reprocessing, as in the original study, “samples” were defined by default as a unique 
combination of core site, species, and size fraction. Δ47 values were then standardized in the usual way, before using D47crunch's built-in com-
bine_samples() method to combine all size fractions with the same core and species, except for G. inflata samples (cf Daëron & Gray and 
accompanying GitHub repository). By properly accounting for analytical error covariance between the Δ47 values to combine, this two-step approach 
avoids underestimating the final standardization errors. This yields the following OGLS best-fit regression: 

Δ47 = 37.79× 103/T2 + 0.169 (D47calib.peral 2018) (30)  

[J20] Synthetic and heated calcites [Jautzy et al., 2020] 

Jautzy et al. [2020] reported data from a continuous period spanning 10 months, and used a moving-window approach to standardize their 
measurements. We assigned sessions defined, whenever possible, as periods of one or more complete weeks enclosing one of more unknown sample 
analyses. The resulting Δ47 residuals, on the order of 40 ppm (1SD), do not display evidence of instrumental drift. Formation temperatures are from 
table S2 of the original study. We assigned arbitrary 95% uncertainties of ±1◦C, which seem reasonable for laboratory experiments. Combining these 
temperature constraints with the D47crunch-reprocessed Δ47 values yields the following OGLS best-fit regression: 

Δ47 = 45.44× 103/T2 − 25.78
/

T + 0.175 (D47calib.jautzy 2020) (31)  

[A21⋅MIT] Natural and synthetic carbonates analyzed at MIT [Anderson et al., 2021] 

Raw IRMS data and temperature constraints were obtained from the original study's supplementary information (tables S01 and S02). When 
reprocessing the IRMS data we made no changes to the session defintions, but we excluded sessions 5 and 25 because they did not include any un-
known sample analyses. This yields the following OGLS best-fit regression: 

Δ47 = 38.35× 103/T2 + 0.163 (D47calib.anderson 2021 mit) (32)  

[A21⋅LSCE] Slow-growing calcites analyzed at LSCE [Anderson et al., 2021] 

Raw IRMS data were obtained from the original study's supplementary information (SI-S02). Temperature contraints are from Table 1 in Daëron 
et al. [2019]. This yields the following OGLS best-fit regression: 

Δ47 = 38.72× 103/T2 + 0.158 (D47calib.anderson 2021 lsce) (33)  

[F21] Synthetic, heated and slow-growing calcites [Fiebig et al., 2021] 

Temperature contraints are duplicated from the earlier publications where the corresponding samples were first described [Daëron et al., 2019; 
Jautzy et al., 2020; Anderson et al., 2021]. Raw IRMS data and were obtained from the original study's supplementary information, and processed as 
described by Fiebig et al. [2021], jointly using (a) heated and 25 ◦C -equilibrated CO2 to constrain the scrambling effect and compositional 
nonlinearity associated with each session, and (b) ETH-1 and ETH-2 reference materials to anchor unknown samples to the I-CDES scale. This data 
processing strategy was designed to overcome compositional drift in the batch of ETH-3 used in some of Fiebig et al.'s analytical sessions, and is 
validated by the fact that the resulting “pseudo-I-CDES” Δ47 values for slow-growing calcite from Devils Hole (DVH-2; DHC2–8) and Laghetto Basso 
(LGB-2) agree almost perfectly with the I-CDES values obtained by Anderson et al. [2021] in [A21⋅LSCE]. This yields the following OGLS best-fit 
regression: 

Δ47 = 44.43× 103/T2 − 26.08
/

T + 0.180 (D47calib.fiebig 2021) (34)  

[H22] Marine bivalves [Huyghe et al., 2022] 

Huyghe et al. [2022] reported Δ47 values of modern calcitic bivalves collected from localities with good environmental constraints. As was done in 
the original publication, different bivalve individuals were initially treated as distinct analytical samples. In some sites with strong seasonality, in-
dividuals were sub-sampled into winter-calcified a summer-calcified fractions. Δ47 values were then standardized in the usual way, before using 
D47crunch's built-in combine_samples() method to combine all samples from the same locality. Calcification temperature estimates are from the 
original study. This yields the following OGLS best-fit regression: 

Δ47 = 36.76× 103/T2 + 0.185 (D47calib.huyghe 2022) (35) 
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[DL23] Devils Laghetto 

Finally, one may wish to combine the measurements of Devils Hole and Laghetto Basso calcite reported by Anderson et al. [2021] and Fiebig et al. 
[2021], for a total of 76 replicates with an external Δ47 repeatability of 0.009 ‰. These independent measurements yield statistically indistinguishable 
values (RMSE = 2.6 ppm at the sample level), yielding the following OGLS best-fit regression (see Fig. 17):

Fig. 17. Regression plot for the “Devils Laghetto” calibration data, based on slow-growing calcites from Devils Hole and Laghetto Basso. Error bars are 95% con-
fidence limits. Yellow shaded regions are 95% confidence bands of the best-fit functions. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)   

Δ47 = 39.04× 103/T2 + 0.154
(
D47calib.devils laghetto 2023

)
(36) 

Note that is equation differs slightly from that reported by Daëron and Gray [2023]. This is because they used York regression, ignoring corre-
lations in Δ47 measurement uncertainties. 

Appendix B. Algebraic inversion and confidence limits of the combined Δ47 calibration 

B.1. Inversion 

Inverting Δ47 = a0 + a1/T + a2/T2 yields: 

1
T
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2

1 − 4a2(a0 − Δ47)
√

− a1

2a2
⇔

1
T
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Δ47

a2
+

(
a1

2a2

)2

−
a0

a2

√

−
a1

2a2
(37) 

In the case of the combined regression of Eq. (28), this results in: 

T =
103

0.21265 +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
23.4427⋅Δ47 − 4.0427

√ (38)  

B.2. Standard model errors and confidence limits of the combined regression 

As seen in Section 2.2.4, the model standard error for Eq. (28) may be computed from the covariance matrix of the best-fit model parameters and 
the Jacobian of the model function: 
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)
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(39) 

The resulting confidence limits on Δ47 values and the corresponding temperature estimates are shown in Fig. 15. Although it is assumed that the 
probability distribution of best-fit regression parameters is a multivariate normal distribution, as discussed in Section 3.2.3 this is only a first-order 
approximation. We may test the validity of that assumption by using a Quasi-Monte Carlo approach [Roy et al., 2023] to generate 216 slightly different 
versions of the 104 (T,Δ47) pairs in the combined calibration data set, distributed according to their full covariance matrix. Each of these 216 versions 
of the data set is subjected to an OGLS regression yielding 216 versions of the best-fit parameters (a0, a1, a2). As shown in Fig. 15, the distribution of Δ47 
values computed from these Quasi-Monte Carlo outputs is visually indistinguishable, for any given temperature, from the normal distribution of Δ47 
derived from our first-order linear approximation. 

B.3. Confidence limits and covariance of Δ47-derived temperatures estimates 

When analyzing a group of N samples, with y =
[
yi
]

being the vector of measured Δ47 values and the corresponding temperature estimates being 
noted T = [Ti]: 
⎛

⎜
⎜
⎜
⎜
⎝

T1
T2
⋮

TN

⎞

⎟
⎟
⎟
⎟
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⎜
⎜
⎝

g(y1)

g(y2)

⋮
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⎞

⎟
⎟
⎟
⎟
⎠

with g being for example defined as in (38) (40) 

The covariance matrix of T, noted CT, may then be derived from JT, the Jacobian matrix of T with respect to y and Cy, the covariance matrix of y, 
itself estimated using for instance the D47crunch library [Daëron, 2021]: 

CT = JT|y⋅Cy⋅JT|y
⊤ with : JT|y =
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(41) 

Note that the formulation above neglects the model uncertainties computed in (18). To include them, we may use the complete covariance and 
Jacobian matrices: 

CT = [ JT|p JT|y ]⋅

[
Cp 0
0 Cy

]

⋅[ JT|p JT|y ]
⊤
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(42) 

The standard errors for Ti estimates are computed as usual from the diagonal elements of CT. Note that when comparing different Ti values, 
correlated errors due to calibration uncertainties (Cp) and/or to positive covariance in the Δ47 measurements (Cy) will tend to cancel out if the full CT 

errors are properly propagated. 
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Kissel, Catherine, Michel, Elisabeth, Riveiros, Vázquez, Natalia, Waelbroeck, Claire, 
2018. Updated calibration of the clumped isotope thermometer in planktonic and 
benthic foraminifera. Geochim. Cosmochim. Acta 239, 1–16. https://doi.org/ 
10.1016/j.gca.2018.07.016. 

Petersen, S.V., Defliese, W.F., Saenger, C., Daëron, M., John, C.M., Huntington, K.W., 
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