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Most Earth-surface calcites precipitate out of
isotopic equilibrium
M. Daëron1, R.N. Drysdale2,3, M. Peral1, D. Huyghe4,5,6, D. Blamart1, T.B. Coplen7, F. Lartaud4 & G. Zanchetta8

Oxygen-isotope thermometry played a critical role in the rise of modern geochemistry and

remains extensively used in (bio-)geoscience. Its theoretical foundations rest on the

assumption that 18O/16O partitioning among water and carbonate minerals primarily reflects

thermodynamic equilibrium. However, after decades of research, there is no consensus on

the true equilibrium 18O/16O fractionation between calcite and water (18αcc/w). Here, we

constrain the equilibrium relations linking temperature, 18αcc/w, and clumped isotopes (Δ47)

based on the composition of extremely slow-growing calcites from Devils Hole and Laghetto

Basso (Corchia Cave). Equilibrium 18αcc/w values are systematically ~1.5‰ greater than those

in biogenic and synthetic calcite traditionally considered to approach oxygen-isotope equi-

librium. We further demonstrate that subtle disequilibria also affect Δ47 in biogenic calcite.

These observations provide evidence that most Earth-surface calcites fail to achieve isotopic

equilibrium, highlighting the need to improve our quantitative understanding of non-

equilibrium isotope fractionation effects instead of relying on phenomenological calibrations.
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Harold Urey’s prediction1, based on fundamental thermo-
dynamic principles, that the isotopic composition of
carbonate minerals must be strongly influenced by their

crystallization temperature is the cornerstone of both stable-
isotope geochemistry and paleoclimatology. 18O/16O abundance
ratios in carbonates primarily reflect the temperature and oxygen-
isotope composition of the water from which they precipitated,
both of which vary in complex but generally understood ways
under the influence of important environmental parameters, such
as altitude, latitude, atmospheric circulation, greenhouse gas
concentrations, global ice volume, and rainfall distribution. For 7
decades, this relationship has been extensively applied to the
study of past climates2, sedimentary and diagenetic processes in
the Earth’s crust3, the global carbon cycle4, biological mechan-
isms of calcification5, ore deposits and petroleum geology6, the
petrogenesis of carbonatites7, the ecology of marine and terres-
trial species8, and the early Solar System9. This versatility stems
from the ubiquity of carbonate minerals in the geologic record
and the biosphere, and from the ease with which dissolved
inorganic carbon (DIC) species exchange oxygen isotopes with
water, reaching chemical and isotopic equilibrium on short time
scales10.

Despite the historical and contemporary importance of
oxygen-isotope geochemistry, there is still no consensus on the
true equilibrium 18O/16O fractionation factors between carbo-
nates and water11–16. Different groups of inorganic and biogenic
carbonates appear to follow different fractionation laws,
prompting the use of phenomenological calibrations believed to
describe the behavior of various specific types of natural carbo-
nates (e.g., refs. 17,18). Although many of these calibrations dis-
play similar temperature sensitivities, with δ18O values decreasing
by 0.2‰ per K around 20 °C, certain types of carbonates, such as
speleothems19,20, corals5,21, or coccoliths22, are clearly influenced
by additional parameters beyond precipitation temperature.
These discrepancies most likely reflect isotopic disequilibrium
related to poorly constrained kinetic/metabolic processes, con-
sistent with the fact that Earth-surface carbonates generally pre-
cipitate rapidly from supersaturated solutions23. Our
understanding of such non-equilibrium processes, however, is far
from complete. The main unanswered questions concern which
DIC species are directly involved in crystallization, the processes
by which different reaction pathways may be favored or inhibited,
and how to quantitatively describe nucleation effects, crystal-
surface phases, or the role of amorphous calcite24–26.

To isolate and understand these non-equilibrium processes, it
is necessary to establish a baseline of equilibrium 18O/16O frac-
tionation as a function of temperature. Both theory23,27 and
empirical results28 suggest that full attainment of oxygen-isotope
equilibrium might not be achievable in laboratory experiments, so
that one must instead turn to natural minerals precipitated very
slowly from slightly supersaturated environments. Suitable nat-
ural carbonates, however, remain exceedingly rare. It has been
argued, based on its extremely slow growth and the long-term
stability of its geochemical environment, that the subaqueous
mammillary calcite coating the walls of the Devils Hole cave
system (Nevada, USA) offers optimal conditions for equilibrium
crystallization16. Devils Hole calcite of Holocene age, precipitated
at ~33.7 °C, is known to yield significantly higher δ18O values
than those predicted from laboratory experiments and from many
biogenic calcite calibration studies, suggesting that most natural
carbonates are affected by non-equilibrium oxygen-isotope frac-
tionations with magnitudes on the order of 1–2‰. Several recent
theoretical models of kinetic fractionation23,27,29 have postulated
equilibrium fractionation factors anchored to the Devils Hole
data, but relying on a single observation remains problematic,
particularly when extrapolating to colder environments.

Here, we extend the isotopic equilibrium baseline to low
temperatures based on another instance of extremely slow-
growing calcite, originating from an unusual karstic environment.
We find that this equilibrium baseline displays a slope (i.e.,
temperature sensitivity) indistinguishable from that for faster-
growing calcite, with a constant oxygen-18 enrichment of ~1.5‰.
We also compare the clumped-isotope (Δ47) compositions of
these two slow-growing calcites to that of biogenic calcite pro-
duced by bivalves and foraminifera, and also observe subtle but
resolvable Δ47 differences between “equilibrium” and biogenic
calcite. We conclude that most calcites precipitating at the surface
of the Earth fail to achieve complete isotopic equilibrium.

Results
Slow-growing calcite from Laghetto Basso. The subaqueous
calcite coating found at the bottom of Laghetto Basso, a small lake
in Corchia Cave (Italy), provides an apparently continuous
paleoclimate record of the last 960 ka30. In situ observations of
pH and temperature spanning more than 10 years, along with
numerous isotopic and elemental analyses of water samples
(ref. 31 and Supplementary Table 1), demonstrate that modern
pool water is thermally and chemically stable, with pH= 8.2 ± 0.1
and T= 7.9 ± 0.2 °C (1 SD). Drip counting conducted over several
hours in May 2017 suggests that the lake received 50–60 L per day
during this period. Based on an estimated lake volume of 20 m3,
water residence time is expected to be on the order of 1 year,
much longer than the ~33 h required for 99% isotopic equili-
bration between DIC and water. What’s more, in contrast to most
karstic environments of paleoclimatic interest, dripwater must
percolate through the Corchia Cave system for long durations on
the order of years to decades before reaching Laghetto Basso31. As
a result, the subaqueous calcite precipitates from a solution which
is already very close to chemical and isotopic equilibrium with
host rocks and the local cave atmosphere30,31.

Laghetto Basso calcite shares many other similarities with
Devils Hole mammillary calcite, making it very likely that it was
also precipitated in isotopic equilibrium. Both sites are char-
acterized by low values of calcite saturation indices (0.18 ≤ log
(Ω) ≤ 0.30), very slow growth rates (≤ 0.8 μm/y), similar surface
textures and crystal fabrics, and comparable solution ratios of
[DIC]/[Ca2+] and [Mg2+]/[Ca2+]31,32. In the context of the
present study, the most significant difference between the two
sites is the higher pH in Laghetto Basso (8.2 versus 7.4 at Devils
Hole). Although pH is expected to influence 18O/16O fractiona-
tion between water and rapidly-precipitating calcite, this effect
decreases with slower crystallization rates27,33, and becomes
negligible (≤ 0.05‰) at the very slow growth rates considered
here.

Oxygen-18 equilibrium. The oxygen isotope compositions of
Devils Hole and Laghetto Basso waters are known from earlier
studies, with respective δ18OVSMOW values of −13.54 ± 0.05‰16

and −7.39 ± 0.09‰ (refs. 20,34, Supplementary Table 1). We
sampled calcite from the outer surface of coatings from both sites
and measured their carbon and oxygen stable-isotope composi-
tions (Table 1). Both samples yield calcite/water oxygen-18
fractionation factors (18αcc/w) which are 1.5‰ greater than pre-
dicted by the experimental calibration of Kim and O’Neil15

(Fig. 1), defining an equilibrium baseline (Eq. (1), with crystal-
lization temperature T in kelvin) whose slope is indistinguishable
from that of the synthetic precipitates:

103 lnð 18αcc=wÞ ¼ 17:57 ´ 103=T � 29:13 ð1Þ

The regression uncertainties are best expressed by reformulating
the above equation so that regression errors in its slope and
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intercept values are independent:

103lnð 18αcc=wÞ ¼A ´ 103 1=T � 1=T0ð Þ þ B

A ¼ 17:57 ± 0:43 1 SEð Þ
B ¼ 29:89 ± 0:06 1 SEð Þ
T0 ¼ 297:7 K

ð2Þ

The temperature sensitivity of Eq. (1) is 0.20‰ per K at 20 °C,
which is similar to that of equilibrium oxygen-18 fractionation
between dissolved (bi)carbonate ions (CO2

3−, HCO3
−) and water

(0.19‰ and 0.21‰ per K, respectively35). Our findings are thus
consistent with the hypothesis that the kinetic components of

18αcc/w vary primarily with pH, crystallization rate, and/or solu-
tion saturation, but remain relatively insensitive to temperature
(at least within the range of typical Earth-surface conditions), as
postulated in several theoretical models27,29.

Clumped-isotope disequilibrium in biogenic calcites. As a
complementary characterization of isotopic equilibrium, we also
measured the clumped-isotope composition (Δ47) of these two
calcite samples (Table 1). Clumped isotopes describe statistical
anomalies in the abundance of isotopologues with multiple rare
isotopes, such as (13C18O16O2)2− 36. In the same way that car-
bonate δ18O values potentially record equilibrium oxygen-isotope
fractionation factors between the mineral and aqueous phases, Δ47

values of calcite are expected to reflect temperature-dependent
isotopic equilibrium constants within the mineral phase37, pro-
viding a complementary but independent isotopic thermometer.

The Devils Hole–Laghetto Basso calibration for equilibrium
values of Δ47 in calcite at Earth-surface temperatures (Fig. 2a) is
described by the following equation:

Δ47 ¼ 46:0 ´ 103=T2 þ 0:1423 ð3Þ

Again, reformulating Eq. (3) so that regression errors in its slope
and intercept values are independent yields:

Δ47 ¼A ´ 103 1=T2 � 1=T2
0

� �þ B

A ¼ 46:0 ± 2:8 1 SEð Þ
B ¼ 0:6786 ± 0:0029 1 SEð Þ
T0 ¼ 292:9 K

ð4Þ

The slope of this regression is statistically indistinguishable from
those obtained by several recent Δ47 calibration studies28,38–40.
However, precise comparisons between clumped-isotope measure-
ments performed in different laboratories remain challenging due
to several methodological issues41,42. For instance, earlier Δ47

measurements of Devils Hole calcite43,44 are not directly
comparable to the values reported here because they are anchored
to CO2 standards instead of the carbonate standards used in our
study. To circumvent this problem, we compare our equilibrium
observations to the clumped-isotope compositions of planktonic
and benthic foraminifera collected from marine sediment core-
tops45 and of modern calcitic bivalves from environments with
minimal seasonal variability, all of which were analyzed in a
single laboratory, following identical analytical procedures,
using the same set of carbonate standards, within a limited time
frame (10 months).

Laghetto Basso calcite yields a slightly lower Δ47 value than the
biogenic samples formed at similar temperatures, but this
difference arguably remains within analytical uncertainties. By
contrast, the clumped-isotope composition of Devils Hole calcite
plots 17 ± 5 ppm (1SE) below the extrapolated foraminifer
regression line, and 27 ± 8 ppm below the bivalve line. It is
notable that Devils Hole calcite precipitates from waters with a
significantly lower pH than most biogenic carbonates. For
example, several foraminiferal species are known to actively
elevate pH at calcification sites by at least 0.5 units above typical
seawater pH values of 8.246–48. However, pH is only expected to
influence Δ47 in fast-growing carbonates33,44,49,50. Thus, if the
biogenic carbonates analyzed here had achieved clumped-isotope
equilibrium, they should not display large Δ47 departures from
the DVH-LGB baseline regardless of pH.

One possible interpretation of these results is that biogenic
samples formed at low temperatures achieve quasi-equilibrium
clumped-isotope compositions, but warmer samples do not.

Table 1 Crystallization conditions and stable-isotope
compositions of water and calcite from Devils Hole and
Laghetto Basso

Devils Hole Laghetto Basso

Sample DVH LGB
Average pH 7.4 8.2
Ionic strength 10.5 × 10−3 5.2 × 10−3

Growth rate (mol m−2 s−1) 1–8 × 10−10 ~3 × 10−10

Temperature (°C ± 1 SD) 33.7 ± 0.2 7.9 ± 0.2
Water δ18OVSMOW (‰ ± 1SE) −13.54 ± 0.05 −7.39 ± 0.09
Calcite δ13CVPDB (‰ ± 1SE) −1.95 ± 0.01 0.02 ± 0.02
Calcite δ18OVPDB (‰ ± 1SE) −15.83 ± 0.04 −4.48 ± 0.03
1000 ln(18αcc/w) (±1SE) 28.13 ± 0.06 33.38 ± 0.10
Δ47 (‰ ± 1SE) 0.6309 ± 0.0041 0.7247 ± 0.0040

Because of low supersaturation conditions and extremely slow growth rates, the composition of
these two natural samples is very likely to record equilibrium values of 18αcc/w and Δ47
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Fig. 1 Equilibrium 18O/16O fractionation between calcite and water (18αcc/w)
as a function of crystallization temperature (T). The equilibrium baseline
defined by slow-growing calcites from Devils Hole and Laghetto Basso
(colored confidence region, Eq. (2)) is indistinguishable from the theoretical
prediction of Watkins et al.27 (dashed line), which is quasi-identical to the
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Alternatively, if we assume that clumped isotopes in biogenic
samples and in slow-growing calcites are characterized by the same
regression slope, the Δ47 values of foraminifera and bivalves are
respectively 11 ± 3 and 17 ± 5 ppm (1SE) higher than predicted
from the equilibrium baseline. More generally, despite statistically
indistinguishable regression slopes (Fig. 2b), an analysis of
covariance based on conservative estimates of analytical errors
and temperature uncertainties indicates that the observed difference
between slow-growing inorganic calcite and the biogenic samples is
statistically significant (p ≤ 10−3). Contrary to the case of oxygen
isotopes, these differences are not much larger than the current
precision limits on Δ47 measurements, particularly when taking
inter-laboratory discrepancies into account.

Our ability to jointly define equilibrium values for the two
independent isotopic thermometers opens up interesting new
possibilities. For instance, combining Δ47 and 18αcc/w observations
clearly exposes large isotopic differences between our biogenic
carbonates and the slow-growing calcites, without requiring any
assumptions on their crystallization temperatures (Fig. 3). We
anticipate that this kind of combined observations will be most
useful in studies such as those of diagenetic carbonates, where
temperatures remain poorly constrained but where the oxygen-
isotope composition of parent waters may be estimated from
independent methods (e.g., fluid inclusions51).

Discussion
Our findings demonstrate that mammillary calcite from Devils
Hole is not an anomalous outlier, but rather that natural calcites
formed at crystallization rates much slower than those achieved
so far in laboratory experiments are systematically enriched in
oxygen-18 relative to carbonates precipitating more rapidly from
equilibrated DIC solutions. This observation offers support to
theoretical models in which oxygen-18 fractionation between DIC
and calcite (18αcc/DIC) varies between an equilibrium limit and a
kinetic limit, respectively corresponding to low versus high values
of crystallization rate, saturation index, and ionic strength23,27,29.
The fact that the slope of the equilibrium regression line in Fig. 1
is indistinguishable from that of Kim and O’Neil15 or from that of
equilibrium fractionation between dissolved (bi)carbonate ions
and water35 implies that both the equilibrium limit and the
kinetic limit of 18αcc/DIC do not vary strongly with temperature.

An important prediction of these theoretical models is that
virtually all biogenic and most inorganic calcites precipitating at
the surface of the Earth crystallize too rapidly to achieve DIC-
calcite equilibrium. This conclusion is not invalidated by the fact
that some rapidly-precipitating inorganic carbonates such as
speleothems18 or travertines52 often display higher δ18O values
than predicted by Kim and O’Neil15, because this observation
may be simply explained by isotopic disequilibrium between DIC
and water due to Rayleigh fractionation of the DIC pool under
conditions of rapid CO2 degassing53. Carbonates formed close to
isotopic equilibrium are only expected to be found in
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environments with very low supersaturation states, such as for
example recrystallized carbonates from deep-sea sediments54, or
carbonates associated with low-temperature hydrothermal
alteration of young oceanic crust55. Deeper away from the sur-
face, isotopic equilibrium might be the rule rather than the
exception for diagenetic or metamorphic carbonates formed at
significantly warmer temperatures, where isotope exchange
reaction rates are much faster.

The biogenic carbonates analyzed here yield Δ47 values 5–20
ppm higher than equilibrium, and it appears possible that the
magnitude of clumped-isotope disequilibrium decreases at low
calcification temperatures. It should be noted that “oxygen-18
equilibrium”, referring to oxygen-isotope exchange between water
and mineral phases, and “clumped-isotope equilibrium”, referring
to the internal distribution of isotopes within the mineral phase,
are logically independent, i.e., neither implies the other, because
ultimately they reflect different processes. It is still an open
question whether the clumped-isotope signature of calcite is
inherited from that of one or more DIC species, or whether it
reflects partial or complete isotopic exchanges occurring in
transitional phases such as amorphous calcite or crystal-surface
phases25,26,28,44. By contrast, achieving oxygen-18 equilibrium
between water and calcite requires establishing a series of inter-
mediate equilibria: between water and DIC, then between DIC
and calcite, either directly or through the intermediate phases
mentioned above. Each of these exchange steps may fail to
achieve equilibrium, which potentially manifests in very different
ways. For example, rapid CO2 degassing of DIC solutions is
associated with kinetic isotope fractionation effects which
strongly affect both δ18O and Δ47

56, contrary to the dis-
equilibrium observations reported here which only weakly affect
the latter.

Our findings provide robust new evidence that the majority of
calcites precipitated at the surface of the Earth achieve neither
oxygen-18 nor clumped-isotope equilibrium, probably because
most of them precipitate rapidly from supersaturated solutions.
In most cases, kinetic components of 18αcc/DIC typically decrease
carbonate δ18O values by 1–2‰, even in “well-behaved” biogenic
carbonates where 18αcc/w varies primarily with temperature. As
noted by Watkins et al.27, oxygen-isotope thermometry works
reasonably well in spite of these strong kinetic effects because
many types of natural carbonates precipitate under limited ranges
of pH and growth rates. However, the observation that non-
equilibrium oxygen-18 effects in coccolithophores have varied
drastically at geologic time scales22,57 offers a cautionary tale
regarding the long-term applicability of modern calibrations for
biogenic carbonates. Moving beyond phenomenological char-
acterizations of oxygen-isotope and Δ47 thermometry calls for
substantial improvements in our ability to model isotopic fluxes
and fractionations in the water/DIC/carbonate system. In our
view, the use of non-classical isotopic tracers, such as clumped
isotopes and oxygen-17 anomalies (Δ17O), offers appealing new
opportunities to test and improve these models.

Methods
Inorganic calcite samples. Holocene Devils Hole calcite (sample DVH) was
collected from the outer surface of sample DHC2-8, which was previously
described by Winograd et al.58 and Coplen16. After a 15-min ultrasonic bath
treatment with reagent-grade methanol, we abraded the surface of DHC2-8 to a
maximum depth of 100 μm using a programmable micro-mill at its slowest setting.
Laghetto Basso calcite (sample LGB) was collected from the top of core CD3-12,
located a few centimeters away from core CD3, which was described by Drysdale
et al.30. Each half of CD3-12 was ultrasonically cleaned in deionized water to
remove loose particles from the active growth surface, then air-dried at ambient
temperature. Calcite was abraded from 15 discrete 1-cm2 regions of its outer
surface using a Dremel hand tool fitted with a diamond burr and a magnification
lens. The depth of abrasion was estimated to be no more than 100 μm. Both DVH
and LGB powders were then rinsed in methanol and dried at room temperature.

Bivalve samples. Three specimens of Antarctic scallop species Adamussium col-
becki were collected at a water depth of 15 m near the Dumont d’Urville Antarctic
station in January 2007 (66.658°S, 140.008°E). Seawater temperature, constrained
by the ROSAME network (Reśeau d’Observation Sub-Antarctique et Antarctique
du niveau de la MEr), remains stable annually (mean T=−1.8 °C) except for a
summer warming peak around −0.5 °C between January and March59. Seawater
δ18OVSMOW value, estimated from the Global Seawater Oxygen-18 Database of
Schmidt et al.60, is −0.26 ± 0.06‰.

Five live specimens of the deep-sea oyster species Neopycnodonte cochlear were
collected in March 2010 from the Lacaze-Duthiers canyon (42.533°N, 3.453°E,
Mediterranean Sea) at a depth of 270 m, about 20 km east of the coast. Mean
annual temperature remains constant at 13.5 ± 0.1 °C61. Local δ18OVSMOW values
vary seasonally between 0.23 and 0.93‰, with an average value of 0.70‰ (M.
Sebilo, pers. comm.).

Four live Saccostrea cucullata oysters from the warm shallow waters of the
Kenyan coast (Tiwi Beach, 4.239°S, 39.604°E) were collected in September 2005.
Local seawater temperatures vary annually from 25.1 to 28.5 °C (T= 26.8 ± 0.9 °C).

All bivalves were rinsed with deionized water and bathed in 5% H2O2 to remove
organic matter. Subsampling of N. cochlear and S. cucullata targeted the hinge area
of each specimen, potentially offering a complete record of life-long calcification.
Approximately 15 mg calcite powder was collected from each hinge area using a
Dremel hand tool fitted with a 0.2-mm bit. For A. colbecki, we selected a small piece
of the shell and ground it manually in an agate mortar.

Foraminifer samples. Peral et al.45 analyzed Late Holocene foraminifera collected
from 13 marine sediment core-tops, comprising 9 planktonic and 2 benthic species.
Calcification temperatures were estimated based on the gridded seawater δ18O
model of LeGrande and Schmidt62, assuming the oxygen-18 fractionation law of
Kim and O’Neil15. Note that the observed differences between the slow-growing
inorganic calcites and the foraminifera only increase if calcification temperatures
were derived instead from the oxygen-18 fractionation law of Shackleton63.

Traditional stable-isotope analyses. Traditional stable-isotope analyses (δ13C,
δ18O) of samples DVH and LGB were performed using a MultiCarb system cou-
pled to an Isoprime 100 mass spectrometer in dual-inlet mode. International
carbonate standards NBS 19 (δ13CVPDB= 1.95‰; δ18OVPDB=−2.20‰) and NBS
18 (δ13CVPDB= 5.01‰; δ18OVPDB=−23.01‰) were analyzed along with DVH
and LGB. All samples and standards were analyzed six times, with each replicate
analysis requiring about 150 μg of carbonate. Sample δ13C and δ18O values were
computed directly from ion current ratios 45/44 and 46/44 using the IUPAC-
recommended oxygen-17 correction parameters of Brand et al.64. As recommended
by Coplen65, final δ18OVPDB values are scaled to the nominal oxygen isotope
compositions of NBS 19 and NBS 18. The overall external reproducibility (standard
deviation) of these measurements were 0.02‰ for δ13CVPDB and 0.04‰ for
δ18OVPDB.

Clumped-isotope analyses. Clumped isotope measurements were performed
according to previously described protocols41,45. Carbonate samples were con-
verted to CO2 by phosphoric acid reaction at 90 °C. After cryogenic removal of
water, the evolved CO2 was helium-flushed through a purification column packed
with Porapak Q and held at −20 °C, then quantitatively recollected by cryogenic
trapping and transferred into an Isoprime 100 dual-inlet mass spectrometer
equipped with six Faraday collectors (m/z 44–49). Pressure-dependent background
current corrections were measured independently for each sample. Background-
corrected ion current ratios were converted to δ13C, δ18O, and “raw” Δ47 as
described by Daer̈on et al.41, using the IUPAC oxygen-17 correction parameters64.
The raw Δ47 values were converted to the “absolute” Δ47 reference frame defined by
the “ETH” carbonate standards42. The overall external reproducibility (standard
deviation) of Δ47 measurements for carbonate samples and standards is 15 ppm.
Average Δ47 values are based on 22 replicate analyses (each) for samples DVH and
LGB, 20 replicates for N. cochlear, 17 for S. cucullata, and 12 for A. colbecki. Full
analytical errors are derived from the external reproducibility of carbonate stan-
dards (N= 151) and samples (N= 93) within each analytical session, and con-
servatively account for the uncertainties in raw Δ47 measurements as well as those
associated with the conversion to the “absolute” Δ47 reference frame.

Statistical methods. Relationships between Δ47 and crystallization temperature
are modeled using weighted orthogonal distance regressions of the form Δ47=
A/T2+ B in order to account for errors in both variables. In all three regressions,
root mean square weighted deviation (RMSWD) values are smaller than one,
implying that analytical and observational errors are sufficient to explain the scatter
in the mean observations.

Analysis of covariance (ANCOVA) was performed by first computing the
probability for the null hypothesis that two independent regression lines have
identical slopes. If the two slopes are statistically indistinguishable (at a given
confidence level), observations from both data sets are jointly fit to a new model
with two parallel lines. If the distance between these two lines is statistically
indistinguishable from zero, the null hypothesis that the two data sets follow the
same relationship between Δ47 and T cannot be excluded.
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Data availability
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We thank C. Spötl and three anonymous reviewers for useful feedback on the manu-
script. M.D. is grateful to T. Kluge for his early encouragement to write up this study. The
clumped-isotope facility at LSCE is part of PANOPLY (Plateforme Analytique Geós-
ciences Paris-Saclay) and was supported by the following institutions: Reǵion Ile-de-
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